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Abstract

A reliable reward function is essential for reinforcement learning (RL) in image generation. Most
current RL approaches depend on pre-trained preference models that output scalar rewards to
approximate human preferences. However, these rewards often fail to capture human perception and
are vulnerable to reward hacking, where higher scores do not correspond to better images. To address
this, we introduce Adv-GRPO, an RL framework with an adversarial reward that iteratively updates
both the reward model and the generator. The reward model is supervised using reference images
as positive samples and can largely avoid being hacked. Unlike KL regularization that constrains
parameter updates, our learned reward directly guides the generator through its visual outputs,
leading to higher-quality images. Moreover, while optimizing existing reward functions can alleviate
reward hacking, their inherent biases remain. For instance, PickScore may degrade image quality,
whereas OCR-based rewards often reduce aesthetic fidelity. To address this, we take the image itself
as a reward, using reference images and vision foundation models (e.g., DINO) to provide rich visual
rewards. These dense visual signals, instead of a single scalar, lead to consistent gains across image
quality, aesthetics, and task-specific metrics. Finally, we show that combining reference samples with
foundation-model rewards enables distribution transfer and flexible style customization. In human
evaluation, our method outperforms Flow-GRPO and SD3, achieving 70.0% and 72.4% win rates in
image quality and aesthetics, respectively. Code and models have been released.
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1 Introduction

Recently, online reinforcement learning (RL) has attracted increasing attention in large language models
(LLMs) [6, 35, 50] and multimodal large language models (MLLMSs) [4, 18, 26, 28, 37, 51]. In particular, the
Group Relative Policy Optimization (GRPO) [35] algorithm, introduced by DeepSeek-R1 [6], has proven
effective for aligning model behavior with reward signals in these domains. Motivated by these advances,
several studies [5, 22, 40, 44, 45] have applied online RL to text-to-image (T2I) generation with diffusion
models. For example, DanceGRPO [45] and Flow-GRPO [22] demonstrate that reward-driven optimization
can improve performance when suitable reward models are provided.

However, despite these encouraging results, applying GRPO to T2I generation still faces fundamental challenges.
The main difficulty lies in the misalignment between reward models and true human aesthetic preferences. In
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Figure 1 Overview of our approach. Our method Adv-GRPO improves text-to-image (T2I) generation in three ways: 1)
Alleviate Reward Hacking, achieving higher perceptual quality while maintaining comparable benchmark performance
(e.g., PickScore, OCR), as shown in the top-left human evaluation panel; 2) Visual Foundation Model as Reward,
leveraging visual foundation models (e.g., DINO) for rich visual priors, leading to overall improvements as shown
in middle-top human evaluation results; 3) RL-based Distribution Transfer, enabling style customization by aligning
generations with reference domains.

practice, many reward models produce scalar outputs that introduce biases toward specific visual attributes,
such as oversaturated colors in CLIP-based, PickScore [15], or HPS [27, 43] models, or excessive text emphasis
in OCR-based rewards. As a result, the generator may exploit these biases, achieving higher reward scores
without genuine quality improvement, a phenomenon known as reward hacking. As shown in Fig. 2, Flow-GRPO
underperforms the base model in several aspects, such as lower image quality with the PickScore reward and
reduced aesthetics and quality under the OCR reward in human evaluation.

A common remedy is to add Kullback-Leibler (KL) regularization to contrain the parameter updates, which
reduces reward hacking but limits optimization and lowers performance. To address this, we introduce
Adv-GRPO, a novel RL framework with an adversarial reward that iteratively updates both the reward model
and the base model. We observe that many high-quality reference images receive low scores from existing
reward models. Therefore, we incorporate reference images as high-quality supervision, training the reward
model as a discriminator to distinguish them from generated samples. Meanwhile, the base model as a
generator is optimized with the GRPO loss. For the reward, we focus on human-preference reward models
(e.g., HPS [27, 43], PickScore [15], Aesthetic models [7]), the main paradigm in T2I generation using our
adversarial optimization. For other reward models, such as rule-based rewards (e.g., OCR), we leverage
reference images in a multi-reward optimization scheme to enhance robustness. Our method consistently
improves performance across both types, showing strong adaptability and generalization.

Although our method achieves better visual results and effectively mitigates reward hacking in existing reward
models, some bias remains. For example, the PickScore reward tends to sacrifice image quality, while the
OCR reward may reduce aesthetic fidelity. To address this, we directly use reference images as rewards by
introducing a reward model derived from a visual foundation model [14, 29, 31, 33] to further optimize the T2I
model. Specifically, we leverage the DINO [29] to provide stronger visual signals. Within our adversarial



optimization framework, DINO is fine-tuned as a reward model to guide the generator toward better visual
alignment using reference samples. The output feature of DINO serves as the reward to optimize the base
model. As a result, these dense visual signals, rather than a single scalar from the existing reward models,
enable the base model to produce images with improved aesthetics, text alignment, and overall visual fidelity.

Moreover, we further introduce a new RL- Flow-GRPO(PickScore) vs SD3 Flow-GRPO(OCR) vs SD3
based application for style transfer, where 1900 92.5% 03 100 ) o7.6%
Flow-GRPO 82.4% Flow-GRPO
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different reference datasets of distinct styles
are used to effectively guide the base model to-
ward specific visual domains. Finally, we con-
duct experiments across multiple benchmarks,
and the results show that our method con-
sistently improves image quality, text align-
ment, and aesthetics while maintaining com- 0" Quality Alignment  Aesthetics 0" Quality Alignment  Aesthetics

parable benchmark reward scores. Under the
PickScore and OCR rewards, our method Figure 2 Human evaluation comparing Flow-GRPO and SD3

under PickScore and OCR rewards.
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achieves winning rates of 70.0% and 85.3%
in image aesthetics compared with Flow-GRPO in human evaluation. Under the DINO reward, it further
achieves a 72.4% winning rate in aesthetics compared with the base model in human evaluation.

Our main contributions are summarized as follows:

e We are the first to introduce an RL framework with an adversarial reward that leverages high-quality
reference images to jointly optimize the T2I model and reward model.

¢ We extend our approach to multiple types of existing reward models. Furthermore, we explore using
visual foundation models as reward to guide the optimization of the base T2I model.

o Extensive experiments show that our method effectively alleviates reward hacking in existing reward
models while maintaining competitive performance on standard benchmarks. With visual foundation
model rewards, our method achieves comprehensive improvements in image quality, text—image alignment,
and aesthetics.

2 Related Work

2.1 Reinforcement Learning for Image Generation

Recently, online reinforcement learning (RL) has shown strong effectiveness in improving the capabilities
of large language models (LLMs) [6, 35, 50] and multimodal LLMs (MLLMs) [4, 18, 26, 28, 37, 51], and it
has also been applied to text-to-image (T2I) generation. Compared with earlier RL methods such as PPO,
GRPO is more efficient since it removes the need for an additional value network. In the context of T2I
generation, prior methods such as DPO [8, 20, 23, 38, 46, 47] and PPO [3, 10, 12, 32, 49] have demonstrated
effectiveness, and GRPO has also been adapted in this domain. For instance, DanceGRPO [45] applies
GRPO to both image and video generation models [9, 16, 17, 30, 39], while Flow-GRPO [22] modifies the
optimization process by replacing the ODE [24] with an SDE to improve sampling diversity. Despite these
advances, such methods still face challenges including reward hacking and training instability. Building on
Flow-GRPO, several work [19, 40] further refines the SDE process to stabilize optimization. Prior studies have
sought to improve reward reliability in RL-based image generation. Works such as [1, 27, 48] reduce aesthetic
bias through refined reward design, while SRPO [36] enhances efficiency using semantic positive-negative
prompts. In contrast, we propose an adversarial training framework with reference samples.

2.2 Reward Models for Image Quality Assessment

In T2I generation, the main reward models are human-preference models, such as HPS [27, 43], HPDv2 [2],
PickScore [15], and Aesthetic models [7, 34], which are built upon CLIP [31] and fine-tuned on large-scale
human preference datasets. Other variants, like ImageReward [44] and UnifiedReward [41], further refine
aesthetic alignment. In addition, rule-based rewards, such as OCR-based text accuracy and GenEval [11] for



object correctness, provide explicit but narrow supervision. However, both reward types are prone to reward
hacking, as they often overfit to specific biases rather than capturing true perceptual quality.

3 Method

In this section, we first introduce the preliminaries of GRPO for flow matching and adversarial training in
Sec. 3.1. We then describe our proposed adversarial optimization framework in Sec. 3.1. Finally, in Sec. 3.3,
we extend our approach by leveraging a visual foundation model as the reward to further enhance overall
image quality. An overview of the entire pipeline is illustrated in Fig. 3.

3.1 Preliminary

GRPO on Flow Matching. The denoising process in diffusion models [13, 21, 25] can be viewed as a Markov
Decision Process (MDP), where each reverse step from z; to 2;_1 is treated as an action sampled from a policy
7o (+|z¢, ¢) conditioned on the current noisy sample z; and the text prompt c. In practice, mg corresponds to
the conditional flow distribution pg(z¢_1|xs,c). At each iteration, we generate a group of G samples {x{}&
from the previous policy my,,, and compute their rewards R(x},c). The group advantage At is obtained by
normalizing the reward of each sample within the group:

. R(zi,c)— mean({R(mé, c)}]G:l)
At = . . 1
std({R(ah, )5, W

GRPO then optimizes the policy model by maximizing the following objective:
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Here, e controls the clipping range and § weights the KL penalty to stabilize training.

Adversarial Training. Adversarial training is typically formulated as a minimax optimization problem between
a generator G and a discriminator Dy:

min max Eyvp,,, [108 Dg()] + Eznp, [log (1= Dy (Go(2)))] (4)

where pgata denotes the real data distribution and p, is a prior distribution over latent variables. The
discriminator Dy is trained to distinguish real samples from generated ones, while the generator Gy is
optimized to produce samples that can fool the discriminator.

3.2 GRPO with Adversarial Reward

As shown in Fig. 3, our method extends GRPO to an adversarial setting, where the text-to-image (T2I)
generator and the reward model are jointly optimized. The generator Gy is trained via GRPO to maximize
the rewards of its generated samples. The reward model Ry serves as a discriminator, adversarially trained
to distinguish high-quality reference images from generated ones. Specifically, given a text prompt ¢, the
generator produces a group of samples {z} = Gy(c)}Z, with corresponding reward values Rg(z,c). The
generator is optimized under the standard GRPO objective:

Teon(0) = Berc 2316t [F0: As 0,6, 8)] (5)

where f(r, A,0,¢, B) follows the clipped GRPO formulation described in Eq. 2, and A denotes the normalized
group advantage.



Meanwhile, the reward model is optimized using reference high-quality data Dot = {x,-} as positive samples
and generated images {z,} as negative samples:

Jreward(¢) = _]EwrNDref[log R¢(xr)] - Ezg~G9(c) [log(l - Rd’(xg))] . (6)

This adversarial co-training enforces the reward model to align with reference image distributions while
guiding the generator toward higher-quality outputs.

This joint training objective establishes a dynamic equilibrium: the generator strives to produce images that
maximize the reward, while the reward model continuously adapts by contrasting generated samples with
high-quality references. In this process, reward hacking is effectively mitigated, as Ry learns to better reflect
perceptual quality beyond its initial biases, and Gy is encouraged to improve both reward scores and overall
visual fidelity.

Human Preference Models. Human preference Reward / GRPO Loss
models are the primary type of reward func-
tion used in current T2I generation. They
are trained on human-labeled data, where an-
notators provide pairwise comparisons or aes-
thetic judgments to capture subjective visual

{ Generated Samples |

preferences. We adopt such an adversarial co- i Discriminator
training mechanism that leverages reference
high-quality samples. Let R(-) denote the
reward model, and let G denote the genera-
_— Reference Samples Real or Fake?

tor. We monitor the average reward scores for
generated and reference samples respectively:

Tgen = gy [R(2g)],  Tret = BapnDyof[R(r)]-
(7)

When the average reward of generated im-
ages surpasses that of reference images, i.e.,
Tgen > Tref, We regard this as a signal of po- Figure 3 Pipeline of Adv-GRPO. The generator is optimized
using the GRPO loss, while the discriminator is trained to distin-
guish between generated samples and reference images, treated
as negative and positive samples, respectively. The discriminator
serves as a reward model to provide feedback for the generator.

Entropy Loss

tential reward hacking. At this point, we
trigger adversarial fine-tuning of the reward
model, where reference samples are treated
as positive samples and generated samples as
negative samples. This process re-aligns the reward model toward human-preferred visual quality and prevents
degenerate feedback loops during GRPO optimization. The optimization objective is defined in Eq. 6.

Rule-based Reward Models. Besides the main human-preference reward models, other rewards such as rule-based
metrics (e.g., OCR or GenEval [11]) provide clear task-specific signals but are inherently deterministic
and non-differentiable, making them unsuitable for adversarial training. To address this, we fully leverage
high-quality reference images and adopt a simple multi-reward formulation to balance task specificity and
visual realism. The reward is

Rcombined (xgy C) =A Rrule(xg; C) + (1 - >\) SimCLIP (.'Eg, l'r), (8)

where R,y denotes the task-specific reward (e.g., OCR or GenEval), simcy,p measures the CLIP similarity
between the generated image x4 and a reference image x,, and A € [0, 1] controls the trade-off. This formulation
stabilizes training by preventing rule-based objectives from dominating and preserving overall visual fidelity.

3.3 Visual Foundation Models As Reward

The existing reward models provide explicit supervision but capture only limited aspects of image quality
and often introduce aesthetic or content biases. Incorporating reference images via adversarial co-training
alleviates reward hacking but mainly regularizes the reward model rather than holistically improving image
quality.



Therefore, we further explore using visual foundation models as reward models to guide the optimization of
the base generator. Unlike conventional reward models, visual foundation models encode rich semantic and
structural representations of natural images, making them well-suited for aligning the overall distribution of
generated images with that of high-quality reference images.

Formally, given a pre-trained visual foundation model Fy(-) (e.g., DINO [29]), we freeze its parameters and
attach a lightweight binary classification head h4(-) on top of its representations. For each input image z, we
extract both the global [CLS] embedding and the patch-level features:

fC1S7 Fpatch = Fw (SL’), (9)

where f.s € RP denotes the [CLS] token feature, and Fraten € RN*D represents the N patch embeddings.

Given the global [CLS] feature f.is and patch-level features Fpatch = {f; }§V=1 extracted from the frozen visual
backbone Fy(-), the reward is computed using a shared classification head hy(-) as:

1
Rgloba1($) = hqb(fcls) s Rlocal(x) = E Z h(b(fj) ) (10)
JjES

where § C {1,..., N} denotes a randomly selected subset of n patch tokens. This stochastic sampling
encourages the model to focus on diverse local structures while maintaining computational efficiency. The
final reward combines both components:

Rqﬁ(x) = /\gRglobal(x) + )\lRlocal(-T)> (11)

where A, and A; control the relative contribution of global and local cues.

During adversarial training, the reward head hg is trained to discriminate reference images x, ~ Dyef (positives)
from generated images x4 ~ Gg(c) (negatives). We employ a hinge loss objective for this discrimination.
Specifically, hy is applied to both the global [CLS] feature and a subset of randomly sampled patch features
extracted from the frozen backbone Fy(-), with separate hinge losses computed at the global and local levels.
The corresponding hinge losses at the global and local levels are defined as:

Lgiobal(¢) = By, [max(0, 1 — he(£e))] + Eq, [max(0, 1+ he(£5))]: (12)
Liocal(¢) = By, ﬁz max (0, 1 — hy(£])) | + Eq, ﬁz max(0, 1+ hg(£7)) ] . (13)
jeS JjES

The final adversarial loss for training the reward model is a weighted combination:

»Creward(qs) = )‘gﬁglobal(d)) + Al£loca1(¢)v (14)

T g
where £}, and £

patch-level features.

denote the global features of reference and generated images, and {7, ff represent their

This global-local reward formulation enables the generator to benefit from both complementary aspects: the
global [CLS] feature emphasizes high-level semantics and structural consistency, while the local patch features
capture fine-grained texture and detail. Together, they allow the model to generate more coherent and visually
refined images.

4 Experiments

4.1 Implementation Details

Training Setup. We adopt Stable Diffusion 3 (SD3) [9] as the base generator. For the PickScore [15] reward,
we use the PickScore prompt dataset for training and evaluation, and for the OCR reward, we employ the
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Figure 4 Human evaluation under PickScore- and OCR-based rewards. Our method Adv-GRPO improves image
quality and aesthetics with PickScore reward in a), and for all metrics with OCR reward in b). Compared with the
original model (SD3), PickScore reward trade-off aesthetic improvements with image quality degradation in c¢), OCR
reward trade-off text-alignment from aesthetics degradation in d).

SD3

Flow-GRPO

Adv-GRPO

PickScore . OCR

Figure 5 Visualizations under PickScore (Left) and OCR (Right) rewards. Our method Adv-GRPO alleviates reward
hacking for both.

OCR prompt set. For visual foundation model experiments, we employ DINOv2 [29] as the reward model
to optimize the base generator. Under the DINO [29] reward, our method is validated on PickScore, OCR,
and GenEval prompts. Each prompt forms a group of 16 samples during training. We fine-tune only the last
two layers of PickScore’s vision branch (learning rate 3 x 10~* for the generator and 5 x 1076 for the reward
model) for 1,000 iterations. For DINO, we train the classification head with a learning rate of 1 x 10=%. In
the OCR setting, we jointly optimize SD3 using both OCR and CLIP similarity rewards. Training uses 10
inference steps, with 2 timesteps randomly sampled from the 50-100% noise schedule. Eight reference images
per prompt are generated with Qwen-Image [42]. All experiments are conducted on 8 NVIDIA H100 GPUs.
Further details are provided in the supplementary material.

Baselines. We compare our method with two baselines: Base Model, the original SD3 without reinforcement
learning optimization; and Flow-GRPO [22], a GRPO-based variant of SD3 that reformulates diffusion
sampling as a stochastic differential equation to enhance training stability and diversity.

4.2 Evaluation Protocol

Metrics. We evaluate our method using these reward metrics: PickScore, OCR accuracy, and GenEval
score [11]. In addition, we also compute the DINO similarity, which measures the cosine similarity between
image embeddings extracted by the DINO, reflecting the semantic consistency between generated and reference
images.

Human Evaluation. In addition, we conduct a comprehensive human evaluation covering three aspects: Aesthetics,
Alignment, and Quality. The aesthetic score measures overall visual appeal and artistic composition. The
alignment score evaluates the semantic consistency between generated images and text prompts, while the
quality score reflects perceptual fidelity, structural coherence, and the absence of artifacts or distortions. We
employ 12 expert evaluators to perform pairwise comparisons across 100 prompts for each reward setting,
covering a total of 400 diverse prompts. In total, 10 comparison pairs across different rewards and methods are
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Figure 6 Human evaluation results under the visual foundation model (DINO) reward. Using a foundation model as
the reward, our RL method improves image aesthetics, quality, and text alignment compared with the original SD3
model (a), and significantly outperforms Flow-GRPO under the DINO similarity reward (b) and PickScore reward (c).

>
5
<

Figure 7 Visualizations under the DINO reward model. With adversarial DINO reward, our method shows better
visual quality.

evaluated, resulting in 12,000 human comparison judgments. To ensure evaluation reliability, we conduct expert
calibration, resolve inconsistent annotations, and continuously verify scoring criteria during the evaluation
process. Further details of the evaluation protocol are provided in the supplementary material.

4.3 Main Results

Reward Hacking Mitigation.

We evaluate reward hacking from two per-  Table 1 Comparison under different reward models. Each row
spectives. a) Comparable benchmark perfor- corresponds to an independent optimization using the specific
mance with Flow-GRPO. As shown in Tab. 1 reward and its associated evaluation metric.

. .1,

our method achieves comparable benchmark

Reward Model  Metric Method
scores to Flow-GRPO, indicating that adver- R T e
bar.lal training does.not COMPTOMISE quar.1t1— PickScore PickScore 1 21.70 22.82 22.78
tative performance in corresponding metrics. OCR OCR Accuracy 1 0.58 o 2

For PickScore, both methods reach around
22.80, substantially higher than 21.70 from SD3. For OCR, our method and Flow-GRPO achieve 0.91
accuracy, outperforming SD3 (0.58) by a large margin. This demonstrates that our approach maintains strong
quantitative results while addressing reward bias.



b) Significant improvement on human evaluation and visualizations. As shown in Fig. 4(a)(b), our method
consistently outperforms Flow-GRPO under both PickScore and OCR rewards, achieving higher aesthetic,
alignment, and quality scores. In particular, the win rate reaches 70% in image quality under PickScore
and 85.3% in aesthetics under OCR. Compared with SD3 (Fig. 4(c)(d)), our method achieves a 72.6% win
rate in aesthetics under the PickScore reward and a 77.6% win rate in alignment under the OCR reward,
demonstrating substantial perceptual improvements. However, we also observe that PickScore optimization
tends to sacrifice image quality, while OCR optimization slightly compromises aesthetics, indicating that some
inherent bias in these reward models remains. Visualizations in Fig. 5 further confirm that our approach
produces images with better perceptual quality and overall fidelity.

Vision Foundation Model as Better Rewards.
We evaluate using DINO as reward models,
and compare our method with Flow-GRPO
(DINO similarity as the reward) and SD3.
a) Comprehensive improvements without de-
gration. Compared with SD3 in Fig. 6(a),
our method consistently improves all human
evaluation metrics, including aesthetics, align-
ment, and quality, especially the aesthetic
dimension with 72.4% win rate. Compared
with Flow-GRPO (using DINO similarity as
the reward) in Fig. 6(b), our method achieves
a 66.3% win rate in quality and a 75.2% win
rate in aesthetics. Fig. G(c) compares our Figure 8 Visual comparison between our method (DINO reward)
method with Flow-GRPO (using PickScore and SD3 across different task prompts.

reward), and our method achieves 93.5% win

rate in quality. These results suggest that, compared with preference-based reward models, using a visual
foundation model (DINO etc.) as the reward provides a more comprehensive and reliable guidance for image
generation. The visualization results in Fig. 7 also show that our approach produces higher-quality images
with richer backgrounds and improved aesthetics.

GenEval

Order in the Court

Adv-GRPO (DINO)

— S : =
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table and a pink dog

b) Con'sistent imp mve.ment across benchmarks. Table 2 General evaluation using the DINO reward across
We validate the versatility of the DINO reward  yyltiple tasks, comparing our method with SD3.

using different benchmark prompts, including

OCR and GenEval. As shown in Tab. 2, our Method PickScore T OCR Accuracy T GenEval 1
adversarial DINO reward consistently improves SD3 21.70 0.59 0.61
Adv-GRPO (DINO) 21.90 0.69 0.69

performance across tasks, increasing OCR, accu-
racy from 0.59 to 0.69 and GenEval score from 0.61 to 0.69 compared with SD3. The visual results in
Fig. 8 also demonstrate visually appealing outputs, confirming that DINO serves as a general and reliable
reward model across diverse objectives. Our reward curves exhibit a steady increase over training iterations,
converging within roughly 1,000 steps, which is provided in the supplimentary material.

4.4 Ablation Study

Number of Reference Images. We study the effect of the number of reference images by varying the dataset size
across 200, 500, and 1,000 samples. As shown in Tab. 3, our method achieves comparable DINO similarity
even with only 200 reference images, indicating that a small dataset is sufficient for effective optimization.
The qualitative results in Fig. 10 further show that visual quality and style consistency remain stable as the
number of references increases, demonstrating the data efficiency of our approach.

Comparison with Supervised Fine-Tuning (SFT). Human evaluation shows that our method under DINO reward
model achieves notably higher perceptual quality than SFT, with over 70% win rates in both aesthetics and
image quality in Fig. 6(d). As shown in Fig. 9 and Tab. 4, our approach also attains better visual results and
higher quantitative metrics. Unlike SF'T, which cannot explicitly optimize for specific reward objectives, our
RL framework enables targeted optimization toward desired aspects such as text readability or visual appeal.
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Figure 9 Ablation results. (a) Visualizations with different numbers of reference images, showing effectiveness even
with 200 samples. (b) Visualizations of ablation studies on SFT, KL regularization, multi-reward optimization, and
our method Adv-GRPO.

Table 3 Ablation on the number of reference samples used during inference. Our method maintains stable DINO
similarity even with few reference images, demonstrating strong data efficiency.

w/ Fewer Reference Samples Adv-GRPO
200 500 1000

Metric SD3

DINO Similarity 1+ 0.592 0.621 0.618 0.619 0.621

Table 4 Ablation on SFT, KL regularization, and multi-reward optimization under PickScore and OCR metrics.

Metric SFT Flow-GRPO (w/ KL) Multi-Reward Adv-GRPO
PickScore 1 21.60 21.84 21.60 22.78
OCR Accuracy T 0.68 0.80 0.91 0.91

Adv-GRPO(DINO) vs SFT

SFT
71.1% 9
; Adv-GRPO 70.6%

©
=

KL Regularization. We compare our method with Flow-GRPO using a
KL regularization term. As shown in Tab. 4 and Fig. 9, adding a KL
constraint leads to lower reward scores and degraded visual quality. KL
regularization is sensitive, an overly large coefficient restricts optimization,
while a small one cannot prevent reward hacking. Overall, our method
achieves better stability and visual fidelity without relying on such fragile
regularization.

~
=)

-}
=}

50.5%19,5%

N
[=)

28.9% 29.4%

Human Evaluation Win Rate (%)
w I
o o

Multi-Reward Combination. We also compare our method with Flow-GRPO
trained using a combination of PickScore and OCR rewards. Although
multi-reward optimization can also reduce reward hacking, balancing Figure 10 Human evaluation com-
different reward weights is challenging due to varying sensitivities across ~ paring our DINO-reward model
models. As shown in Tab. 4 and Fig. 9, our method achieves higher =~ with SFT, where our method per-
metrics and better visual fidelity than the multi-reward baseline. forms better.

N
o

Quality Alignment Aesthetics

Sci-fi style )

Figure 11 Application: Style transfer with the adversarial DINO reward. Our method successfully transfers the SD3
model to target visual domains, including Anime and Sci-Fi styles.
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4.5 Style Customization via Adv-GRPO

We further demonstrate the versatility of our method through a style customization task. Unlike conventional
RL-based T2I approaches that rely solely on text prompts and self-generated samples, our framework enables
RL-driven optimization directly from pure image inputs, using visual foundation models such as DINO to
guide learning. We construct two reference datasets, one anime-style and one sci-fi themed, and fine-tune the
SD3 model with our proposed pipeline. As shown in Fig. 11, our method effectively transfers the generation
style toward the reference domains while preserving semantic structure and image quality. This experiment
showcases the flexibility and generalization of our approach, representing the first RL-based framework capable
of performing style customization.

5 Conclusion

We introduce an RL framework with an adversarial reward for T2I generation. By leveraging reference
high-quality references, the reward model better aligns with human visual preferences and mitigates reward
hacking. Besides, incorporating visual foundation models such as DINO further provides unbiased visual
guidance, improving overall image quality, aesthetics and text alignment. Extensive experiments verify the
effectiveness and generality of our framework across diverse reward settings.
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Appendix

In this supplementary material, we provide additional visualization results in Sec. B, further style transfer
examples in Sec. C, experiments using SigLIP for optimization in Sec. D, more implementation details in
Sec. A, the reward curves in Sec. E, and the full procedures of our human evaluation in Sec. F.

A More Implementation Details

In the DINO reward, we assign a 7:3 weighting ratio to the global and local batch losses and rewards. For SD3,
we apply LoRA-based fine-tuning with a configuration that uses a rank of 32, a scaling factor (lora_ alpha)
of 64, and Gaussian initialization for all LoRA weights. During both training and evaluation, we set the
classifier-free guidance (CFG) scale to 4.5, and employ bfloat16 mixed precision throughout the process. For
the DINO reward training schedule, we adopt a 10:1 update ratio, meaning that the discriminator is updated
for 10 steps for every 1 generator step. For the PickScore reward model, we perform fine-tuning only when
the reward assigned to the generated images surpasses that of the reference images.

B Visualizations Under Our Method

Alleviating Reward Hacking. We provide additional visualizations to further demonstrate the effectiveness
of our method across various reward models. As shown in Fig. 12, our approach significantly alleviates
reward hacking issues present in existing reward models such as PickScore and OCR, producing images with
consistently higher overall visual quality compared with Flow-GRPO.

More Visualizations under DINO reward. In addition, Fig. 13 presents more visualization results obtained under
the adversarial DINO reward model. These results show that our method generates images with stronger
compositional quality, richer color saturation, improved aesthetic appeal, and more diverse background details,
further validating the robustness and generalization ability of our approach.

C More Visualizations on Style Customization

As shown in Fig. 16, our method successfully transfers the base model’s style to an anime style using anime
reference images. These results demonstrate that our RL-based approach, guided by a visual foundation
model, can effectively achieve style customization.

D Using SigLIP for Optimization

As shown in Fig. 15, in addition to DINO, we also experiment with SigL.IP as the visual foundation model
used for optimization. The pipeline follows the same structure as DINO: we attach a lightweight head to
SigLIP and use it to classify reference images and generated images. In this setup, SigLIP serves as the
discriminator, while SD3 functions as the generator. Unlike DINO, which provides both global and local
features, SigLIP offers only global representations. The successful performance under SigLIP demonstrates
that our method generalizes well to visual foundation models beyond DINO.

E Reward Curve

We report the reward curve obtained during training, as illustrated in Fig. 17. The results show that training
converges within approximately 1000 steps. In addition, the reward of our generated images consistently
surpasses that of the reference images (produced by the QWen model) throughout the training process.

F Human Evaluation

For the human evaluation, we assess model performance across three dimensions: image quality, image
aesthetics, and text-image alignment. For each question, experts are presented with two images generated by
two different models and are asked to select the better one along all three dimensions, as shown in Fig. 18.
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Figure 12 More Visualizations about alleviating reward hacking under PickScore and OCR reward models.
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Figure 13 Additional visualizations using the DINO reward model. Our method produces images with consistently
higher visual quality.
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Figure 14 More visualizations with DINO reward using different benchmark OCR and GenEval prompts.

We construct a benchmark consisting of 10 groups of comparison tasks, with a total of 100 questions. Each
group is evaluated by 12 experts, and each question receives annotations from 3 independent experts. This
setup results in 300 individual annotation data points (100 questions x 3 annotators per question), from which
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Figure 15 Visualizations with the SigLIP reward. Compared with SD3, using other visual foundation models such as
SigLIP as the reward function can also lead to overall improvements in image quality.
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Figure 16 More style customization results. Using anime reference images, our method effectively transfers the base

model’s style to an anime aesthetic, guided by the provided samples.
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Figure 17 Reward curves under different reward models. We shows the training dynamics of our method and the
baseline under three reward models: (a) PickScore, (b) OCR accuracy, and (c) DINO cosine similarity.

we derive the final aggregated results.

To ensure the reliability of the human evaluation, we adopt a multi-step quality-control protocol. First, we
conduct expert calibration, during which annotators review reference examples and align on the scoring criteria.
During the evaluation, we monitor and resolve inconsistent annotations through cross-checking and adjudication
when needed. In addition, we continuously verify and refine the scoring guidelines throughout the evaluation to
minimize ambiguity and ensure consistent interpretation across annotators.
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Figure 18 Screenshot of the interface used in our human evaluation study.
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