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Abstract

Colonoscopy reconstruction is pivotal for diagnos-
ing colorectal cancer. However, accurate long-sequence
colonoscopy reconstruction faces three major challenges:
(1) dissimilarity among segments of the colon due to its
meandering and convoluted shape; (2) co-existence of sim-
ple and intricately folded geometry structures; (3) sparse
viewpoints due to constrained camera trajectories. To
tackle these challenges, we introduce a new reconstruc-
tion framework based on neural radiance field (NeRF),
named ColonNeRF, which leverages neural rendering for
novel view synthesis of long-sequence colonoscopy. Specif-
ically, to reconstruct the entire colon in a piecewise man-
ner, our ColonNeRF introduces a region division and in-
tegration module, effectively reducing shape dissimilarity
and ensuring geometric consistency in each segment. To
learn both the simple and complex geometry in a unified
framework, our ColonNeRF incorporates a multi-level fu-
sion module that progressively models the colon regions
from easy to hard. Additionally, to overcome the chal-
lenges from sparse views, we devise a DensiNet module
for densifying camera poses under the guidance of seman-
tic consistency. We conduct extensive experiments on both
synthetic and real-world datasets to evaluate our Colon-
NeRF. Quantitatively, our ColonNeRF outperforms exist-
ing methods on two benchmarks over four evaluation met-
rics. Notably, our LPIPS-ALEX scores exhibit a substantial
increase of about 67%-85% on the SimCol-to-3D dataset.
Qualitatively, our reconstruction visualizations show much
clearer textures and more accurate geometric details. These
sufficiently demonstrate our superior performance over the
state-of-the-art methods. Our project page is available at
https://showlab.github.io/ColonNeRF/.

1. Introduction
Colorectal cancer (CRC) is a leading cause of death,

ranking fourth only after lung, breast, and prostate cancer

* Equal Contribution † Project Lead � Corresponding Author

[2]. Despite its prevalence, the 5-year survival rate can rise
to 90% for those who undergo early screening [16]. There-
fore, identifying colorectal cancer in the early stage is es-
sential [33, 1, 25]. Colonoscopy [10] has become one of the
most crucial examinations for the early diagnosis of CRC
due to its convenient operations and effectiveness.

However, the preciseness of colonoscopy scans is still
limited by the intricate geometry of the colon. It is re-
ported that even experienced physicians are likely to over-
look about 22-28% of polyps since they only rely on 2D
scans without any 3D details [19]. Therefore, high-fidelity
colonoscopy reconstruction is critical for CRC diagnosis.
The reconstruction is also a prerequisite for various down-
stream clinical applications, e.g. preoperative review and
surgical planning [39]. Additionally, it is an important tool
for medical education and offers hands-on training and skill
development.

Traditional methods such as SLAM [7] have been in-
troduced into colonoscopy reconstruction by matching two-
dimensional (2D) image pixels and their corresponding 3D
spatial points in endoscopic scenes. Specifically, Ma et al.
[27] combine a standard SLAM system with a depth and
pose prediction network and achieve a robust tracking sys-
tem. Meanwhile, Wang et al. [38] utilize the characteris-
tics of surface normal vectors to develop a two-step neural
framework as initialization for a SLAM-based pipeline to
improve the reconstruction quality. However, despite the
capability of SLAM in constructing environmental maps
and tracking agent locations [12], it falls short when tasked
with novel view synthesis, which necessitates a comprehen-
sive understanding of the 3D structure of the scene. As a
result, SLAM fails to produce a comprehensive 3D recon-
struction, limiting its practical use in real-world scenarios.

To address the novel view synthesis issue in 3D recon-
struction, NeRF [27] proposes the neural implicit field for
continuous scene representations and achieves great success
in producing high-quality novel view images for compli-
cated scenarios. Inspired by these, EndoNeRF [39], the first
work leveraging neural rendering (NeRF), exhibits great
performance in 3D reconstruction and deformation track-
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ing of surgical scenes. Unlike EndoNeRF, which focuses
on limited scene reconstruction, our principal objective is
the precise reconstruction of entire long-sequence colono-
scopies. Till now, several key challenges of colonoscopy
reconstruction remain unsolved.

Firstly, the inherent meandering and convoluted shape
of the colon results in dissimilarity across its different
segments. This variability poses significant obstacles
for achieving high-quality reconstruction of long-sequence
colonoscopy when directly utilizing NeRF. Secondly, the
co-existence of simple and intricately folded geometry
structure makes it difficult for the model to adequately learn
every detail in the segment, resulting in losses of crucial de-
tails in the imaging data and posing significant challenges
for accurate colonoscopy reconstruction. Lastly, due to the
constrained camera trajectory during colonoscopy captur-
ing, the colonoscopy data is featured with sparse viewpoints
[39], hindering the performance of previous methods [27].

To resolve the challenges mentioned above, we propose
a new model for 3D colonoscopy reconstruction dubbed
ColonNeRF. The ColonNeRF comprises three purpose-built
modules. Each module in ColonNeRF is meticulously de-
signed to address a specific reconstruction challenge and
they are elegantly combined, ensuring comprehensive and
accurate colonoscopy reconstruction. To overcome the first
challenge of dissimilarity among colon regions due to its
meandering and convoluted shape, we design a region di-
vision and integration module to ensure geometric consis-
tency in each unit. Specifically, the division module is uti-
lized to divide the colon into multiple segments in a soft
manner, which is based on the curvature of the colon with
joint regions learned by both adjacent segments. Then the
integration module is responsible for fusing all divided seg-
ments under the double-filtering strategy. To learn both
simple and complex geometry in a unified framework, we
use a multi-level fusion module to progressively model the
colon structures, enhancing textural and geometric details
in a coarse-to-fine way. To deal with the challenge from
sparse viewpoints, we design a DensiNet module in each
stage to encourage our model to learn colon features from
three angles: original pose, spinning around pose, and helix
rotating pose. Specifically, we employ the DINO-ViT-based
semantic consistency regularization to supervise the recon-
struction from densified camera poses.

1.1. Contributions

In our work, we make the following main contributions:

• We design ColonNeRF, a new 3D framework lever-
aging neural rendering for high-quality long-sequence
colonoscopy reconstruction.

• We design a series of purpose-built reconstruction
mechanisms consisting of the region division and

integration module, multi-level fusion module, and
DensiNet module. These proposals are demonstrated
critical for successfully achieving our state-of-the-art
synthesis results.

• Experiments on synthetic and real-world datasets
demonstrate that our method achieves high-quality
novel view synthesis of long-sequence colonoscopy,
which outperforms the baseline methods. Notably, it
achieves significant improvements of about 21%-29%
and 67%-85% in terms of the LPIPS-VGG and LPIPS-
ALEX metrics respectively on the synthetic dataset.

1.2. Paper Organization

The rest of the paper is organized as follows. In Sec-
tion II, we provide a review of the most related work, fo-
cusing on recent developments in 3D reconstruction and
colonoscopy reconstruction. Section III introduces the pre-
liminary knowledge of Neural Radiance Fields (NeRF),
which forms the foundation of our study. Section IV is
dedicated to a comprehensive description of our proposed
approach, detailing the methodologies and techniques em-
ployed. Section V involves a detailed quantitative and quali-
tative evaluation of our model, conducted using two distinct
datasets to ensure robust assessment. Finally, Section VI
concludes the paper with a comprehensive summary of our
research work.

2. Related Works
2.1. Advances in 3D Reconstruction

Many studies in the field of 3D scene reconstruction
and novel view synthesis (NVS) have traditionally relied on
methods such as Lumigraph [17], light field functions [20],
meshes [14], voxels [3], point clouds [13], and Multi-Plane
Images (MPI) [9]. While these techniques have signifi-
cantly advanced the field, each has inherent limitations that
affect their application in complex scenarios. For example,
Lumigraph and light field functions exhibit poor continu-
ity between different viewpoints and struggle with complex
lighting conditions and shadow effects, which limits their
practical application in the long-sequence colon datasets.
Meshes require a complex topological structure unsuitable
for modeling intricate colon scenes. Due to their discrete
sampling (synthesizing higher resolution images needs a
finer sampling of 3D space), the voxels and point clouds
are limited by poor time and space complexity. Multi-Plane
Images (MPI) encounter difficulties in modeling complex
geometrical shapes and occlusions [30].

Neural Radiance Fields (NeRF) [28] achieve impres-
sive results in novel view synthesis by learning implicit
neural scene representations. Since its emergence, nu-
merous advancements have been made to break through

2



the limited performance of traditional 3D reconstruction
by leveraging differentiable rendering and neural networks
[37, 8, 15, 23, 21] for high-fidelity novel view synthesis of
static and dynamic scenes. For instance, Xu et al. [41] uti-
lize pseudo-labels on unseen viewpoints to guide the train-
ing process and improve model performance. Barron et al.
[4] propose casting a conical frustum instead of a single ray
to solve the anti-aliasing problem. Extensions of NeRF now
address complex and large environments, as demonstrated
by Yuanbo et al. [34], who developed a variant for large-
scale scene rendering, and BungeeNeRF [40], which offers
multiscale rendering. The versatility of NeRF has also ex-
panded into generation and editing applications [29, 43, 22],
underscoring the remarkable progress of NeRF in 3D recon-
struction and novel view synthesis.

2.2. Colonoscopy Reconstruction

Previous works have explored 3D colonoscopy recon-
struction based on the above 3D representations. Ma et
al. [26, 27] develop a SLAM-based system with a post-
averaging step to correct camera pose errors, showcasing
advancements in camera tracking. In addition, Rau et al.
[31] leverage SFM pseudo-labels and RNN models for 6D
camera pose prediction, integrating deep learning into re-
construction. Wang et al. [38] utilize the relationship be-
tween illumination and surface normals to refine the normal
and depth predictions recursively. Liu et al. [24] propose
a SLAM system with appearance and geometry prior to re-
construct the 3D geometry of the observed region. While
SLAM excels in generating environmental maps and track-
ing the spatial positioning of agents, its performance is com-
promised during novel view synthesis due to the necessity
for detailed modeling of the scene 3D structure. This defi-
ciency impedes the model to deliver an exhaustive 3D re-
construction, thus constraining its utility in practical real-
world settings. The introduction of NeRF [28] marked
a turning point, leading to methods like EndoNeRF [39],
which utilize neural rendering for surgical scene reconstruc-
tions. However, EndoNeRF [39] focuses on limited scene
reconstruction and is unsuitable for long-sequence colon re-
construction.

2.3. Preliminaries

Neural Radiance Fields (NeRF) [28] synthesize novel
views of a scene by mapping 5D coordinates, comprising
3D position x and 2D viewing direction d to RGB color
c and volumetric density σ. Each pixel in an image corre-
sponds to a ray r(τ) = o+τd, where o is the camera origin,
and d is the ray direction, τ is the distance between the ori-
gin point and sample point. The predicted color C(r) of the
pixel can be represented as:

C(r) =
∫ τfar

τnear
T (τ)σ(r(τ))c(r(τ),d)dτ , (1)

where T (τ) = exp

(
−
∫ τ

τnear

σ(r(s))ds
)
. (2)

To facilitate the NeRF Multilayer Perceptrons (MLPs)
in capturing more high-frequency details [35], the inputs x
and d are each preprocessed through a sinusoidal positional
encoding γ:

γ(z) =
[
sin(z), cos(z), . . . , sin

(
2L−1z

)
, cos

(
2L−1z

)]T
(3)

where L is the number of levels of positional encoding.
The NeRF [28] model optimizes the radiance field by

minimizing the mean squared error between the syntheti-
cally rendered color and the ground truth color, as given by:

Lpixel =
∑

r∈Ri
∥(C(r)− Ĉ(r))∥2 (4)

where Ri is the set of input rays during training, Ĉ(r) and
C(r) is the ground truth and predicted RGB colors for ray
r.

3. Methodology
3.1. Framework Architecture

As shown in Fig. 1, given long-sequence colonoscopy
data, we first split the data by region division module (Sec.
B) to ensure geometric consistency within each segment.
To learn both the simple and complex geometry in a uni-
fied framework, we use the multi-level fusion module (Sec.
C) to progressively learn the colon geometry structure, im-
proving the texture and geometry details in a coarse-to-fine
way. Drawing inspiration from the BungeeNeRF [40], the
model adopts the residual connection to enable gradients
obtained from the latter MLPs to flow back to earlier MLPs
smoothly. Subsequently, DensiNet module (Sec. D) tackles
sparse data by densifying camera poses, incorporating orig-
inal, spinning around, and helix rotating poses to augment
data.

As shown in Fig. 2, during rendering, we run the region
integration module (Sec. E) to filter out blocks that con-
tribute minimally to the final output and integrate blocks
containing pertinent information to ensure a seamless tran-
sition between blocks. Finally, we summarize the training
objectives (Sec. F).

3.2. Region Division Module

To address the inherent dissimilarities in different colon
segments that are characterized by varying diameters and
curvatures, we develop a region division module for the
colon’s meandering and convoluted structure. This mod-
ule aims to reconstruct the entire colon piecewise, reduc-
ing shape dissimilarity and ensuring geometric consistency
in each segment. Specifically, it segments the colon into
blocks at bends or locations with significant angle changes.

3



Figure 1. Overview of ColonNeRF. The architecture comprises a region division module, depicted in the upper section, where orange areas
illustrate transition zones between adjacent regions. Each region includes a core area (red) and an adjacent transition zone, processed
through various sparsity levels to produce coarse, medium, and fine data. These data feed into a multi-level fusion module, with each
stage containing an DensiNet module for data augmentation. Within DensiNet module, we input the helix rotating pose, original pose,
and spinning around pose into the MipNeRF [4] to optimize intestinal geometry learning. A DINO-ViT module is included for supervised
training. Following processing through this module, final color, density, and transparency are determined, and the region integration module
executes information filtering, fusion, and rendering across all blocks.

This approach not only promotes shape similarity within
each segment but also surpasses traditional methods that
process the colon as a single unit, enhancing the overall
quality and accuracy of the reconstruction.

Applying this region division module to our datasets, we
adapt its segmentation strategy to suit each dataset’s spe-
cific geometry characteristics. In the synthetic dataset, the
module divides the colon into 31 distinct blocks, with each
block containing approximately 40 ∼ 50 images. For the
real-world dataset, we divide it into four blocks, each com-
prising 17 ∼ 19 images. We ensure a 30% overlap be-
tween adjacent blocks to maintain seamless transitions, a
critical aspect for accurate reconstruction. This overlapping
strategy is illustrated in Fig. 1, where each block is repre-
sented with a central red region surrounded by two orange
regions, indicating the areas of overlap. This methodologi-
cal approach, detailed further in our ablation study, ensures
a more accurate reconstruction of the colon complex geom-
etry.

3.3. Multi-Level Fusion Module

Given the geometry of the colon, with its blend of simple
surfaces, intricate folds, and numerous blood vessels and
protrusions, the complexity of model reconstruction is sig-
nificantly heightened. Relying solely on single-scale inputs,
which focus on a specific scale, is insufficient for capturing
the full spectrum of features. To surmount this challenge,
we design a multi-level fusion module that progressively
models the colon structures, enhancing textural and geomet-
ric details in a coarse-to-fine manner.

Specifically, the multi-level fusion module initiates with
inputs of low sparsity RGB, depth, and pose data. It pro-
gressively incorporates denser data, enabling a smooth tran-
sition from coarse to fine details, thus enhancing the effec-
tiveness of the feature extraction process. As the model ad-
vances to the next stage, we integrate additional Multilayer
Perceptron (MLP) modules, as demonstrated in Fig. 1. The
level of data sparsity at each ith stage of the input model
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is calculated using the formula 2n

T∗2i , where i denotes the
stage number, ranging from one to n, and T represents the
total duration of the detection.

Each stage of the module includes two sub-modules:
DensiNet and the visibility module. DensiNet generates
RGB and density σ values for each spatial position, while
the visibility module, comprising a four-layer MLP network
and a linear output layer, calculates the transparency Ti for
each spatial ray. The visibility module supervises trans-
parency with the density σ output from DensiNet, following
the formula to calculate the transparency loss:

Ltrans =∥ Ti − σi ∥ (5)

As the model progresses, it inherits the parameters of
DensiNet and the visibility module from the previous stage,
adding two residual connections to link the color and den-
sity outputs from the previous stage to the next. The final
output combines the newly calculated RGB c2 and density
σ2 values with outputs from each stage, resulting in a com-
prehensive final image.

σoutput = σL(
∑σn

σ1
) Coutput = ζ(

∑Cn

C1
) (6)

The activation functions applied to the final values of σ
and c include the Sigmoid function σL for density and a
Softplus function ζ for color. This architectural design is
proficient in integrating features at varying sparsity levels,
thereby facilitating a detailed and nuanced image restora-
tion.

3.4. DensiNet Module

Due to the constrained camera movement trace during
the colonoscopic sampling, the sparse 3D points acquired
can significantly deteriorate the quality of the reconstruc-
tion. To deal with this challenge, we design the DensiNet
module, which leverages MipNeRF [4] as its backbone. Al-
though MipNeRF [4] is superior to the original NeRF [28]
in handling ambiguity, it still struggles with sparse data
sampling. Our DensiNet module enhances the ability of
the model to capture the colon features from sparse cam-
era poses.

In the DensiNet module, our approach begins with patch
sampling from RGB and depth images under the original
view. Specifically, we extract 56×56 patches using a stride
of 7 and calculate patch loss by comparing the difference
between these extracted patches and their counterparts in
the post-rendering images using the formula below.

Lpatch = Lp(R1, f(R1)) + Lp(D1, f(D1)) (7)

where Lp represents the patch loss. R1 and D1 repre-
sent the sampled points of RGB and depth image obtained
through the patch sampling technique. The function f cor-
responds to the processing carried out by the MipNeRF [4]

network. f(R1) and f(D1) refer to the RGB and depth
output results from the MipNeRF [4].

Secondly, to further improve the capability to learn struc-
ture from the original viewpoint, we randomly select 3,136
points from the RGB and depth images. We compute the
Mean Squared Error (MSE) loss between these points and
their corresponding post-rendered points from RGB and
depth rendering results, as the subsequent formula defines.

Lrand = Lm(R2, f(R2)) + Lm(D2, f(D2)) (8)

where Lm represents the Mean Squared Error (MSE) loss.
The variables R2 and D2 correspond to the points sampled
from the RGB and depth images using a random selection
strategy. And we could get the final original pose loss.

Lori = Lpatch + Lrand (9)

To counter the sparsity of data, we integrate supervision
from two novel poses - the spinning around pose and the
helix rotating pose. These poses, designed to explore the
surrounding region of the original pose and the colon wall’s
geometric structure, respectively, enhance the model’s ca-
pacity for semantic consistency. We elucidate the specifics
of these poses in subsequent sections.
Spinning Around Pose. To enhance the reconstruction of
geometric structures around the original pose, we employ a
rotation transformation to obtain spinning around pose from
the original pose. For any given pixel P (xi, yi) on the orig-
inal view, its corresponding position on the destination pose
Pdes can be represented as:

Pdes =

[
Rdes tdes
0 1

] [
Rori tori
0 1

]−1

·D · Pori (10)

In this formula, Rdes and tdes denote the rotation matrix
and translation vector for the destination pose, respectively.
Similarly, Rori and tori represent those of the original pose.
D is used to convert pixel coordinates P (xi, yi) to camera
world coordinates (x, y, z). Subsequently, we use the ex-
trinsic matrix to transform the current camera world coordi-
nates into world coordinate systems. Utilizing the destina-
tion pose extrinsic matrix transforms the world coordinate
system into the target camera coordinate system.

In instances of overlapping points post-rotation, the point
with the minimum depth value is retained. We carry out
rotational sampling around the initial original pose, rotat-
ing along the x, y, and z axes at different angles (5 de-
grees, 2.5 degrees, and 1.25 degrees) to generate 216 direc-
tional poses. We integrate all the rays from the 216 poses,
randomly selecting 3,136 rays each time as our spinning
around pose.
Helix Rotating Pose. Due to the spiral characteristics of
colon folds, the DensiNet module adopts a spiral-shaped
sampling trajectory to capture the 3D structure of the folds.
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Specifically, we interpolate between the current pose P3

and neighboring pose P4 using the Slerp (Spherical Linear
Interpolation) algorithm, which yields a quaternion repre-
senting the direction at the intermediate position. The tra-
jectory for the interpolated positions forms a helical path
defined by:

x = (1− t) · x3 + t · x4 +R · cos(2πt)
y = (1− t) · y3 + t · y4 +R · sin(2πt)
z = (1− t) · z3 + t · z4 + h · t

(11)

Where R should be controlled to be less than the radius
of the colon. t represents the position of interpolation,
and h denotes the density of interpolation. (x3, y3, z3) and
(x4, y4, z4) represent the position of P3 and P4. We execute
400 interpolations and randomly choose one as our helix ro-
tating pose.

Through image warping, we obtain the depth and RGB
images in many unseen views, which serve as the pseudo
ground truth label. To supervise the colon geometry struc-
ture in the rotated view, we compute the discrepancy be-
tween these target depths and the depths rendered by the
DensiNet under the same poses, using the following loss
function:

Ldepth = L1(Hd,D3) + L1(Sd,D3) (12)

In the above equation, L1 represents the Smooth L1 Loss
[11]. Hd denotes the depth obtained from the helix trans-
formation, Sd is from spin transformation, and D3 corre-
sponds to the depth rendered by the DensiNet for the corre-
sponding transformation method.

The model utilizes these poses to significantly alleviate
the sparse viewpoint challenge and explore unseen space
around the original pose and the colon wall.
DINO-ViT[6] Vision Transformers (ViT) have been proven
to be an effective tool for image texture alignment, possess-
ing the ability to extract valuable texture features [36]. We
leverage this tool to address the semantic mismatch between
the original and rotated viewpoints - an issue encountered
under helix rotating pose and spinning around pose transfor-
mations. We aim to maintain stylistic similarity and visual
consistency between views after rotation and those from the
original viewpoint.

We employ a pre-trained DINO-ViT model [6], which is
trained on the ImageNet Datasets [32], for feature extrac-
tion. To ensure semantic similarity, we extract tokens to
capture the semantic appearance between the original and
rotated views. We use the MSE loss to calculate the loss
between the extracted features:

LViT = Lm(FViT(OV), FViT(RV)) (13)

Here, FViT represents the pre-trained model that we employ
to extract semantic information from the RGB of the origi-

Figure 2. Detailed depiction of our intestinal seamless integration
module. The module first evaluates the distance from the line con-
necting the centers of two blocks to the target view. Blocks ex-
ceeding the specified distance threshold, represented by the red
area, are filtered out. The remaining blocks undergo visibility
prediction, with blocks demonstrating visibility below a certain
threshold excluded. The final remaining blocks are seamlessly in-
tegrated using Inverse Distance Weighting (IDW), producing our
final results.

nal views OV and the rendering RGB results in the rotated
views RV.

3.5. Region Integration Module

Filtering Method. To enhance the efficiency of the colon
fusion process, we establish two mechanisms for filtering
useless blocks. Firstly, as illustrated in Fig. 2, we consider
only those blocks within a certain range of the observation
points for reliability considerations. Specifically, we calcu-
late the Euclidean distance between the observation points
and the line connecting the centers of two adjacent blocks.
A block is retained for further processing if this distance
is less than 1.5 times the diameter of the colon, ensuring a
consistent and reliable selection criterion.

Our second filtering strategy leverages the visibility
module, previously introduced in our DensiNet module, to
calculate the transparency of this point to the respective
block. For each spatial ray, we calculate the transparency
metric Ti for the ith block in the target view. This trans-
parency metric varies from zero (completely invisible) to
one (fully visible). A value approaching one indicates that
this 3D point is very close to this DensiNet module, and
we can utilize it. Conversely, if the transparency falls be-
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low a certain threshold, we exclude that block in the final
synthetic process. Our experiments show that the visibility
module converges quickly and imposes a negligible compu-
tational load due to its small architecture.
Merge Method. To merge adjacent segments after filter-
ing, we employ the Inverse Distance Weighting (IDW) tech-
nique proposed by Tancik et al. [34]. We select this method
because of its effectiveness in realizing a smooth transition
between adjacent segments. This method mitigates the edge
jitter that occurred when the merge process relied solely on
the closest DensiNet for image rendering.

Specifically, we calculate the distance between the target
view Pt and the block center, which undergoes a dual filter-
ing process. We determine the merging weight W of each
block for interpolation according to the following formula:

W = ∥ center, Pt ∥−ε (14)

where ε denotes the rendering blend ratio. After calculating
the weight Wi for each considerable block i, we normalize it
to obtain the weight wi. Subsequently, we use the following
formula to synthesize the final depth and RGB images in the
target viewpoint.{

Depth =
∑n

0 wi ∗Depthi

RGB =
∑n

0 wi ∗RGBi
(15)

where n represents the number of blocks that pass the dual
filtering process.

3.6. Overall Objectives

Our final loss function is shown as follows:

Lall = λ1Ldepth + λ2Lori + λ3LV iT + λ4Ltrans (16)

Where λ1, λ2, λ3, and λ4 represent the weights of different
losses, respectively. We aim to balance the numerical scales
across different components in determining the weight mag-
nitudes for various loss functions. This operation ensures
that each loss term contributes comparably to the overall
optimization process. Furthermore, to emphasize the im-
portance of geometric depth supervision, we have intention-
ally assigned a higher weight to the depth loss component.
Thus, we initialize λ1, λ2, λ3, and λ4 to 8, 1, 10, and 1,
respectively.

4. Experiments
4.1. Datasets

To evaluate the performance of our approach, we uti-
lized both synthetic and real-world datasets. Our synthetic
dataset comes from the colonoscopy datasets provided by
SimCol-to-3D 2022 [31]. We mainly use sequence 1, which

is comprehensive in its inclusion of images along with cor-
responding pose, depth, and intrinsic and extrinsic param-
eters. For real-world datasets, we primarily employ the
C3VD Descending Colon datasets [5] for their applicabil-
ity in reflecting actual operating conditions.

4.2. Evaluation Metric

We adopt several widely used metrics in comparative
view synthesis quality assessment: Peak Signal-To-Noise
Ratio (PSNR), Learned Perceptual Image Patch Similarity
(LPIPS), and the Multi-Scale Structural Similarity Index
Measure (MS-SSIM). For LPIPS, we adopt two perceptual
metrics based on VGG and AlexNet backbones to ensure a
comprehensive evaluation.

4.3. Implementation Details

Our framework is implemented by using PyTorch. All
experiments are performed on eight NVIDIA RTX3090
GPUs. The MipNeRF [4] serves as the backbone network.
We adopt the Adam optimizer [18] with an initial learning
rate of 2e-4, which is progressively reduced during training.

Our synthetic dataset comprises 989 frames; we approx-
imately equally sample one frame for every four as a test set
and use the remaining frames as a train set, resulting in 233
test images and 756 train images. The real-world dataset is
similarly divided into 35 train images and 19 test images.
In our DensiNet, we apply 216 different rotation angles and
randomly sample 3,136 rays for training.

4.4. Comparison with State-of-the-Art Methods

We primarily compare our model with several main-
stream 3D reconstruction methods, including NeRF [28],
MipNeRF [4], FreeNeRF [42], and EndoNeRF [39] on the
synthetic dataset [31] and real-world dataset [5]. Before
evaluation, we fine-tune the parameters for each scene to
ensure a fair comparison.
Qualitative Comparison. As depicted in Fig. 3, our novel
view synthesis results on both synthetic and real-world
datasets demonstrate significant clarity improvements. Im-
ages rendered by NeRF [4], FreeNeRF [42], and EndoN-
eRF [39] exhibit a noticeable blur, obscuring critical details,
such as folds structure, especially within the deeper intesti-
nal regions. Although MipNeRF [4] retains some details, it
often learns incorrect geometric shapes. Moreover, the re-
constructed depth outcomes from four baselines show sig-
nificant deviations from the ground truth, potentially mis-
leading in clinical diagnosis.

Our model presents the highest-quality novel view syn-
thesis results, notably in representing folds and the intesti-
nal wall, and provides the clearest rendering results even in
deeper areas. It also accurately captures the colon’s geome-
try, which is crucial for precise morphological analysis.
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Figure 3. Novel view synthesis results of different methods on the
synthetic dataset. The first and third columns display the RGB im-
ages, and the second and fourth columns display the correspond-
ing depth images. ColonNeRF consistently outperforms baseline
methods with reliably constructed details and a better understand-
ing of geometry.

Quantitative Comparison. We mainly compare four eval-
uation metrics at four baselines and present the results in
Tab 1. The labels ’Syn’ and ’Real’ correspond to out-
comes on the SimCol-to-3D [31] and C3VD real-world
datasets [5], respectively. Our model demonstrates the
highest quantitative performance over all metrics. Specif-
ically, the PSNR metric shows improvements of 2.2% and
3.08% on synthetic and real-world datasets, respectively.
With LPIPS-VGG and LPIPS-ALEX metrics on synthetic
data, our model outperforms MipNeRF’s performance by
approximately 21% and 67%. On real-world datasets, we
achieve improvements of 2.3% and 6.5% over the best base-
lines. For the SSIM-MS metric, the improvements are 5%
and 3.2% for the synthetic and real-world datasets, respec-
tively. The precise and detailed reconstruction provided by
ColonNeRF enables a more accurate morphological anal-
ysis of the colon structure. It serves as a dependable ref-
erence for clinical assessment and treatment planning, un-
derscoring the superior capability and applicability of our
model in medical applications.

Target Image Coarse Medium Finew/o Integrationw/o DivisionTarget Image Full Model

Figure 4. Novel view synthesis from different stages about the
multi-level fusion module in the synthetic dataset. With the in-
crease of stage, the model has a more accurate detail reconstruc-
tion ability for the scene.

Table 1. Quantitative evaluation of our method against four state-
of-the-art methods. Compared with four baselines, our model ex-
hibits superior performance in four metrics.

Datasets PSNR↑ VGG↓ ALEX↓ MS-SSIM↑

NeRF Syn 26.10 0.4888 0.4405 0.8266
Real 25.86 0.4273 0.3745 0.8536

MipNeRF Syn 24.96 0.4863 0.4367 0.7954
Real 23.29 0.4142 0.3470 0.7702

FreeNeRF Syn 24.80 0.5141 0.4815 0.7881
Real 25.16 0.4096 0.3473 0.8396

EndoNeRF Syn 21.67 0.4985 0.4378 0.6934
Real 21.62 0.5077 0.4889 0.7061

ColonNeRF Syn 26.70 0.3989 0.2605 0.8373
Real 25.54 0.4019 0.3242 0.8598

4.5. Ablation Study

Effects of Multi-Level Fusion Module. We explore the ef-
ficacy of our multi-level fusion module, investigating both
synthetic and real-world datasets, with the results shown in
Fig. 4 and Tab. 2. Our analysis involved separate eval-
uations for each processing stage – coarse, medium, and
fine. When the model operates without the multi-level fu-
sion module, meaning it only has the coarse stage, we input
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Target Image Coarse Medium Finew/o Integrationw/o DivisionTarget Image Full Model

Figure 5. Novel view synthesis without a region division mod-
ule or integration module. When all the information is inputted
into the network simultaneously, numerous lines become distorted,
causing a massive decline in quality. With the integration module
added, transitional effects at the overpass regions also improve.

Table 2. Ablation Study of multi-level fusion module. The Full
Model uses the Fine stage. The table reveals that as the fine-
grained data input, the model learns more complex and localized
geometry details.

Datasets PSNR↑ VGG↓ ALEX↓ MS-SSIM↑

Coarse Syn 25.28 0.4228 0.2993 0.7986
Real 24.97 0.4242 0.3393 0.8244

Medium Syn 25.94 0.4097 0.2770 0.8176
Real 25.47 0.4143 0.3298 0.8474

Fine Syn 26.70 0.3989 0.2605 0.8373
Real 25.96 0.4001 0.3259 0.8676

the c1 and σ1 from the coarse stage directly into the subse-
quent integration module. As evidenced by the figures, this
configuration results in noticeably blurred reconstructions,
particularly around the edges.

With the incremental addition of stages, the model pro-
gressively reconstructs the colon region from easy to hard
and integrates more fine-grained information, resulting in a
more comprehensive depiction of detailed information with
less noise. Considering efficiency and computational time,

we ultimately choose to implement three stages. This mod-
ule effectively improves the geometric and color results of
folds and protrusions.

Table 3. Novel view synthesis without region division or integra-
tion module. The results demonstrate that the absence of the divi-
sion module or the lack of an integration module leads to a decline
in quality.

Datasets PSNR↑ VGG↓ ALEX↓ MS-SSIM↑

w/o Division Syn 20.18 0.5883 0.5639 0.6743
Real 24.49 0.4467 0.3731 0.7944

w/o Integration Syn 26.62 0.4014 0.2620 0.8344
Real 25.88 0.4016 0.3288 0.8655

Full Model Syn 26.70 0.3989 0.2605 0.8373
Real 25.96 0.4001 0.3259 0.8676

Effects of Division and Integration Module. We assess
the impact of the division and integration modules on our
model performance. We present the results in Fig. 5 and
Tab. 3. Without the division module, a single block for
processing all intestinal data results in noticeable distortions
and artifacts. This is because the model is challenging to
handle the varied appearance and drastic angle changes in
the meandering and convoluted colon. The division module
makes each partitioned segment as similar as possible so
that our model can better reconstruct the structure of the
corresponding region.

Implementing the integration module significantly im-
proves the reconstruction outcomes, especially at transitions
between adjacent block regions. This module could com-
bine the understanding of this region from the many blocks
to achieve smooth and seamless transitions. The enhanced
detail fidelity, accurate geometry, and transition smoothness
underscore the importance of the integration module.

Table 4. Ablation study about different views as input. As the num-
ber of views increases, with the addition of geometric constraints
under various viewpoints, all performance metrics improve, yield-
ing more high-quality outcomes.

Datasets PSNR↑ VGG↓ ALEX↓ MS-SSIM↑

1 View Syn 25.05 0.4407 0.3798 0.8004
Real 25.47 0.4254 0.4031 0.8523

2 Views Syn 25.79 0.4086 0.2692 0.8101
Real 25.77 0.4128 0.3782 0.8533

3 Views Syn 26.70 0.3989 0.2605 0.8373
Real 25.96 0.4001 0.3259 0.8676

Effects of DensiNet Module. We explore the impact of
integration inputs from different poses, including the helix
rotating pose and the spinning around pose. As depicted in
Fig. 6 and Tab. 4, 1 view: original pose as input, 2 views:
original pose + helix rotating pose as input, 3 views: origi-
nal pose + helix rotating pose + spinning around pose as in-
put. With the integration of features from the helix rotating
pose, the model demonstrates a significant decrease in blur-
riness and a marked improvement in understanding the ge-
ometric structure of the intestines. Integrating the spinning

9



Target Image 1 View 2 Views 3 Views w/o Integrationw/o DivisionTarget Image Full Model

Figure 6. Ablation study about different views as input in synthetic
and real-world datasets. The ambiguity significantly diminishes
with the increment of input views and enhances the reconstruction
quality of the details.

around pose further reduces artifact occurrences, sharpens
contours, and enhances depth estimation, resulting in better
precision. Our empirical evidence shows that incorporating
each new viewpoint provides guidance about semantic con-
sistency and improves the accuracy in depth estimation and
the overall clarity of the rendering images.
Effects of Coarse-to-Fine. We conduct an ablation exper-
iment to evaluate the efficacy of the coarse-to-fine strat-
egy in the first block data. This involves contrasting the
outcomes of directly inputting fine-grained data at the first
stage against a progressive input, transitioning from coarse-
grained to fine-grained data. We present the experiment re-
sults in Fig. 7 and Tab. 5. By adopting the coarse-to-fine
approach, the model learns the simple and complex geom-
etry in a unified framework and progressively models the
colon from easy regions to hard regions, thereby yielding
reconstructions with improved details.

5. Discussion
The proposed method demonstrates a remarkable abil-

ity in synthesizing highly accurate geometry and textures.
Notably, our depth results show a significant improvement

Target Image Fine Input Coarse-to-Finew/o Integrationw/o DivisionTarget Image Full Model

Figure 7. Novel view synthesis from the coarse-to-fine and fine-
input ways in the synthetic data. Adopting the coarse-to-fine ap-
proach gives the model a better reconstruction effect from easy to
hard regions.

Table 5. An ablation study about coarse-to-fine and fine-input
which using fine-grained data as input in the first stage.

PSNR↑ VGG↓ ALEX↓ MS-SSIM↑
Fine-input 26.23 0.3826 0.2488 0.8402

Coarse-to-fine 27.14 0.364 0.2214 0.8611

over other methods. A key component contributing to this
success is the proposed DensiNet module. This module,
employing angular rotation transformations, enables multi-
viewpoint co-supervision for geometry estimation, which
effectively mitigates modeling difficulties and overcomes
the overfitting problem caused by sparse viewpoints.

Although NeRF-based representation provides higher-
quality NVS results, it is featured with a long time con-
sumption because of its volume rendering process. A po-
tential solution for improving training efficiency is to pro-
pose a more advanced 3D representation strategy that has
both modeling flexibility and rendering speed advantages.

6. Conclusions
In this work, we introduced the ColonNeRF, an inno-

vative framework designed for long-sequence colonoscopy
reconstruction. To tackle the challenges of such a task, we
proposed a region division and integration module to seg-
ment long-sequence colons into short blocks, a multi-level
fusion module to progressively model the block colons from
easy to hard, and a DensiNet module to densify the sampled
camera poses under the guidance of semantic consistency.
Our extensive testing demonstrates that ColonNeRF outper-
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forms four NeRF-based methods in reconstruction quality,
proven across both synthetic and real-world environments.
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