
VideoGUI: A Benchmark for GUI Automation
from Instructional Videos

Kevin Qinghong Lin1, Linjie Li2, Difei Gao1, Qinchen Wu1,
Mingyi Yan1, Zhengyuan Yang2, Lijuan Wang2, Mike Zheng Shou1B

1Show Lab, National University of Singapore 2Microsoft
https://showlab.github.io/videogui

Abstract

Graphical User Interface (GUI) automation holds significant promise for enhancing
human productivity by assisting with computer tasks. Existing task formulations
primarily focus on simple tasks that can be specified by a single, language-only
instruction, such as “Insert a new slide.” In this work, we introduce VideoGUI, a
novel multi-modal benchmark designed to evaluate GUI assistants on visual-centric
GUI tasks. Sourced from high-quality web instructional videos, our benchmark
focuses on tasks involving professional and novel software (e.g., Adobe Pho-
toshop or Stable Diffusion WebUI) and complex activities (e.g., video editing).
VideoGUI evaluates GUI assistants through a hierarchical process, allowing for
identification of the specific levels at which they may fail: (i) high-level planning:
reconstruct procedural subtasks from visual conditions without language descrip-
tions; (ii) middle-level planning: generate sequences of precise action narrations
based on visual state (i.e., screenshot) and goals; (iii) atomic action execution:
perform specific actions such as accurately clicking designated elements. For each
level, we design evaluation metrics across individual dimensions to provide clear
signals, such as individual performance in clicking, dragging, typing, and scrolling
for atomic action execution. Our evaluation on VideoGUI reveals that even the
SoTA large multimodal model GPT4o performs poorly on visual-centric GUI tasks,
especially for high-level planning.

1 Introduction
In the digital age, individuals rely on computers for a vast array of daily activities (e.g.,web browsing,
entertainment adn etc.). These activities often necessitate the use of diverse software, which are
accessed primarily through Graphical User Interfaces (GUIs). Large language models (LLMs) [1],
which excel in understanding complex language instructions and integrating various tools seamlessly,
have shown great potential in GUI automation [2, 3, 4, 5]. They could streamline the navigation
of digital interfaces and significantly enhance productivity, e.g.,assisting slide template creation in
Powerpoint with just a few keywords [2].

Recently, notable efforts have been made in GUI automation evaluation, benchmarking model
performances on Web [4, 6, 7] or Smartphone GUI navigation [8, 9], given screenshots or HTML
codes [10, 11]. Follow-up works [12, 13, 14] develop executable environments with well-defined
action spaces, which removes the dependencies on pre-defined inputs. Nonetheless, most existing
GUI benchmarks [15, 16] restrict their applications to simpler domains and tasks that can be described
with a single text instruction (e.g., “Insert a new slide on the second page”). In real-world scenarios,
users rarely struggle with basic operations that can be clearly described in text. Rather, they often
encounter difficulties in performing novel and advanced tasks (e.g., “Create a special animation
effects in powerpoint”), which extend far beyond basic operations, and rely more on visual signals
than text instructions to complete such tasks.

Preprint. Under review.

https://showlab.github.io/videogui

Visual-centric SoftwareTasks from Instructional Videos

[High-level Planning]
A. Insert the letters 'Jungle' and merge them together as a pattern.
B. Insert a black rectangle to cover the letters and apply subtract on these
letters to create a mask. Insert a Forest figure as background.
C. Insert the animation 'lines curve' and adjust the parameters.

[Middle-level
Planning]
A-1. Click on Insert
A-2. Click on Text Box

[Atomic-action Execution]
Action: Click Element: Insert
Coordinate: [208, 100]

Action: RightClick
Element: Rectangle
Coordinate: [1622, 983]

Action: Drag
Element: slider of Smooth end
Coordinate: [468, 344] to [281, 346]

Action: Type / Press
Element: Ctrl + A

A-33. Key board Type Ctrl + A
A-34. Click on Shape Format
A-35. Click on Merge Shapes
A-36. Click on Union

C-1. RightClick on Rectangle
C-2. Click on Format Shape
…
C-28. Drag slider to decrease Smooth start duration

B-1. Click on 'Jungle' letter
B-2. Click on Shape Format
…
B-12. Click on Subtract Shapes

Watching
Instructional video

Human
Demonstrations

Reproduced
results

What's new on
VideoGUI?Goal: How to create this effect in PPT? Media Creation, Editing, AI tools

Tutor’s Instructions

Figure 1: A brief illustration of VideoGUI. VideoGUI focuses on professional and novel software like PR,
AE for video editing, and Stable Diffusion, Runway for visual creation. We source tasks from high-quality
instructional videos (see an example here), with annotators replicating these to reproduce effects; We provide
detailed annotations with planning procedures and recorded actions for hierarchical evaluation.

Inspired by the abundant instructional videos that teach average users for performing novel and
complex GUI tasks, we introduce VideoGUI, a new multi-modal GUI benchmark derived from high-
quality web instructional videos. As shown in Fig. 1, VideoGUI provides high- quality annotations by
having participants reproducing the instructional videos, capturing multi-level labels from procedural
planning to atomic actions with element locations. VideoGUI covers 11 visual-centric software
applications and features 86 complex tasks (averaging 22.7 actions each) and 463 subtasks, alongside
hierarchical manual planning and 2.7K manual action annotations (Tab. 1).

With VideoGUI, we propose a comprehensive evaluation suite for GUI assistants via a hierarchical
process: (i) high-level planning involves reconstructing procedural subtasks from visual cues without
language descriptions; (ii) middle-level planning details the steps for completing a subtask with a
sequence of precise action narrations based on visual state and textual query; (iii) atomic action
execution is to perform the target actions (e.g.,click on the designated element). For each level, we
design evaluation metrics across individual dimensions to assess model performance, which help to
pinpoint model limitations.

We conduct comprehensive evaluation of SoTA large multimodal models (LMMs) on VideoGUI, and
find that even the current best model GPT-4o fails to complete a single full task in our benchmark. Our
empirical results show that the bottleneck surprisingly lies in planning rather than action execution,
even though GPT-4o is not known for grounding. Moreover, planning from textual queries is much
easier than planning from visual previews for almost all models evaluated, which further implies the
difficulty of visual-centric GUI tasks. Our findings shed lights on the directions for developing the
next generation of models or agent systems towards GUI automation.

2 Related Works

Benchmarks GUI Tasks. In recent years, a range of works have focused on modeling GUI tasks and
benchmarking agents, which include: (i) Web browsing [15], where agents are developed to interact
with web interfaces for navigation and to support a variety of tasks like online shopping. (ii) Mobile
navigation [8], aimed at improving accessibility within mobile GUI simulator environments, such as
Android and iOS [21]. (iii) Several efforts aimed at resolving issues with computer desktop software

2

Benchmark # Task Platform Source Query format # Avg.
Action

Eval. dimension
Text Image Video Task SR. Hier. Plan. Action Exec.

Mind2Web [6] 2350 Web Screenshot ✓ 7.3 ✓ ✓
PixelHelp [17] 187 Android Emulator ✓ 4.2 ✓ ✓
AITW [10] 30K Android Emulator ✓ 6.5 ✓ ✓
AssistGUI [18] 100 Windows Web Video ✓ − ✓
OSWorld [19] 369 Win.+Ubuntu Emulator ✓ – ✓

V-WebArena [20] 910 Web Screenshot ✓ ✓ – ✓

VideoGUI SUBTASK 463 Win. +Web Video + Human
Demonstration ✓ ✓ ✓

5.6
✓ ✓ ✓FULLTASK 86 22.7

Table 1: Comparison of VideoGUI with existing GUI datasets. VideoGUI differs from existing benchmarks
in: (i) sourcing from instructional videos with human demonstrations; (ii) featuring 86 challenging full tasks
averaging 22.7 actions, and 463 subtasks; (iii) offering comprehensive evaluation with hierarchical planning and
action categories.

have emerged, such as grounding UI elements in offline settings like screenshots [16]. Additionally,
there has been development of executable simulated environments [22] for more interactive evaluation.
AssistGUI [18] is one project that utilizes video subtitles and metadata from instructional videos as
reference, and evaluates the model by determining outcomes based on task success or failure.

Differing from these works, we focus on more complex and challenging GUI tasks that often require
individuals to follow instructional videos to replicate long procedure operations and achieve goals.
Specifically, We’ve developed a comprehensive evaluation framework that covers high-level task
procedures, mid-level action decomposition, and atomic-level action execution. Our approach
emphasizes UI visual-centric perception over textual understanding, focusing on identifying visual
goals and transitions between states, which present significant challenges.

Multi-Modal Agents. Recent studies have highlighted the promising potential of LLMs beyond
language modeling. Notable advancements in Chain of Thought (CoT) [23] and ReAct [24] strategies
have demonstrated LLMs’ capabilities as autonomous agents, capable of completing complex tasks
through dynamic programming [25, 26]. Motivated by these progresses, follow-up works connect
LLMs with visual experts to enable multimodal applications, such as visual question answering [27],
or image editing applications [28]. In the realm of Embodied GUI tasks, the primary challenges
involve understanding complex UI elements and planning to execute diverse tasks. This has led to
the development of approaches such as: (i) Training-free agent systems, which primarily consist
of two stages: the first involves semantically understanding UI elements [29, 30, 31], either by
transforming the GUI into HTML representations or language descriptions [11, 32], or using off-the-
shelf visual models like OCR [33] and SoM [32, 34]. The second stage involves utilizing LLMs to
integrate information and generate responses. This method heavily relies on closed-source LLMs [1],
incurring significant costs. Additionally, it limits the model’s UI visual perception abilities, such
as demonstrating goals or state transitions visually rather than linguistically. (ii) Vision-Language-
Action models [35, 36], which are pretrained on large-scale GUI vision-text corpus (e.g.,screenshots).
This enables the LLMs to obtain more abilities such as element grounding and reasoning in unified
responses. However, it remains unclear when and how to employ different types of GUI agents or
tools. VideoGUI provides a comprehensive suite for studying and benchmarking these models.

3 VideoGUI Benchmarks

3.1 Data Construction

Data source. VideoGUI consists of 11 software applications, categorized into: (i) media creation,
featuring visual and animation tools like PowerPoint, Runway, and Stable Diffusion; (ii) media
editing, including Adobe Photoshop, Premiere Pro, After Effects, CapCut, and DaVinci Resolve; (iii)
media browsing, with platforms like YouTube, VLC Player, and Web Stock.

Pipeline. The VideoGUI creation pipeline is illustrated in Fig.2. For each software, (i) we manually
select instructional videos paired with high-quality transcripts from YouTube, focusing on those
teaching practical and novel usages. To collect the human manipulation trajectory, we build a
simulated environment to monitor user behaviors including Click, Drag, Type/Press, and Scroll.
(ii) We invite five participants who first watch the selected video and then try to reproduce the effects
shown using our simulator, which records all cursor and keyboard activities (e.g., [x, y] coordinates

3

(i). Video
Selection

(ii). Human
Demonstration

(iii). Manual
Annotation

(iv). Review &
QA Creation

Figure 2: Illustration of VideoGUI creation pipeline, encompassing four phases: (i) High-quality instruction
videos are manually selected, (ii) Participants replicate skills demonstrated in videos, (iii) Participants annotate
task elements and procedures, (iv) Annotated data is validated manually for VideoGUI benchmarking use.

of a RightClick). Afterward, they provide a brief description of the overall goal for the full task,
which can be optionally used as text query during evaluation. Then the operations shown in the video
is broken down into several subtasks and annotated with textual descriptions, each focusing on a main
functionality operation (e.g., inserting a figure). (iii) We also instruct the annotators to identify the
active elements (e.g., buttons ‘Insert’) for each action, as they are not automatically identified and
recorded by our simulator. After the demonstration, we retain all available files, including material,
project files, and visual outcomes (the latter being our full-task’s visual query). (iv) The participants
cross-validate the annotations, and remove unclear/incorrect ones.

Data statistic. Overall, VideoGUI includes 178 tasks across 11 software applications (Fig. 3a) on
Windows and Web browsers (Chrome, Edge, Firefox). It comprises 86 complex tasks (i.e., full task)
and 92 simple tasks (i.e., subtask) that do not require high-level planning, where those 86 full tasks
can be further divided into 371 subtasks, resulting in a total of 463 subtasks. Fig. 3b shows the
distribution of number of actions per task. In total, we collect 2,712 atomic manual actions. As shown
in Fig. 3c, the most common action is LeftClick (66.2%), while RightClick and Scroll are the least
common actions (approximately 2%).

Editing

Creation Br
ow

sin
g

After Effects

CapCutPremiere Pro

Photoshop
DaVinci

P
ow

erP
oint

StableDiffusion
R

unw
ay

Youtube
VLC Player

Web Stock

(a) Dist. of Software taxonomy.

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3 Full task
Sub. task

(b) Num. of Action per task.

Click
66.2%

Type / Press

16.2%

Drag
13.3%

Scroll
2.36%

RightClick
2.03%

(c) Dist. of Atomic actions.

Figure 3: Data statistics of VideoGUI.

3.2 Evaluation and Metrics

Overview. Imagine a human to complete the complex task illustrated in Tab. 2, we often first break
down the full task into sub-tasks, and then sequentially perform the actions required to complete each
subtask. Existing GUI benchmarks [6, 17, 18] predominantly use a boolean metric (i.e., Success Rate)
to measure the success of completing a task. It may work okay for simpler tasks involving only a few
actions, but is clearly not sufficient in providing feedback on where the models fall short, especially
as the complexity of the task increases (e.g., a full task with over 100 actions), and nonetheless to say
to guide future improvements in modeling for GUI navigation.

To address this, we propose a hierarchical decomposition of tasks into three key stages: A. High-level
Planning, which translates task instructions or reverse engineers final outcomes into several key
milestones. B. Middle-level Planning, which converts each milestone into detailed action narrations.
C. Atomic-level Execution, which focuses on accurately executing specific actions, such as clicking
and typing, as dictated by the narration. The whole evaluation scheme is shown in Fig. 4. Each part
is discussed in detail subsequently.

● High-level Planning. This method translates instructions or outcomes into key milestones (i.e.,
subtasks). Unlike previous approaches that start with explicit textual queries, practical scenarios often
rely on final visual demonstrations like animations, requiring the reconstruction of past procedural
tasks. Accordingly, we develop three categories based on different modal inputs:

4

Visual preview

Start End

Full task ● High-level Plans ● Mid.-level Plans ● Atomic Actions
Visual query: How to trans-
form from [start] to [end] in
Premiere Pro?
Textual query: Change the
blue sky in the background of
the picture to the red color at
sunset.

a. Add ultra key effect to the
video
b. Get the color of the back-
ground
c. Adjust the track order to the
second track
d. Add the new background
photo to the first video track;

a1. Click on Effects panel
a2. Click on search bar in Ef-
fects panel
a3. Key board Type ‘ultra’
a4. Click on ‘Ultra Key’
a5. Drag Ultry key effect from
effects panel to the video. (Pur-
pose: add ultra key to the
video)

a1. Click, [216, 996]

Table 2: Hierarchical annotations in VideoGUI (Premiere Pro). The top row displays the video input and the
desired task outcome as the visual query, with an optional textual query describing the video editing effect. The
model is expected to "reverse-engineer" this outcome through a hierarchical process: first by planning high-level
milestones (i.e., sub-tasks), then detailing each milestone into step-by-step narrations at the middle level, and
finally translating these narrations into executable actions.

• Visual query is our primary setting, with only a visual preview are provided, for example, two
photos before and after editing with Photoshopor an animation effect created in PowerPoint.

• Textual query explicitly defines the objectives using detailed descriptions.
• Visual query + Textual query, which provides the most complete information.
Metrics: Planning involves open-ended question-answering with multiple correct approaches, making
traditional metrics insufficient. To adaptively evaluate model responses, we define a critic using
GPT-4-Turbo [37] inspired by [38], prompting LLM to focus on key elements and operations such as
3D shape and specific animation types. We score the model’s generated procedure steps against the
ground truth on a scale from 0 (totally unrelated) to 5 (almost correct).

● Middle-level Planning. Given a milestone task, the agent should perform appropriate UI operations
based on its observation state (e.g., screenshots). This stage aims to generate a sequence of precise
action narrations (i.e., desired action type with an accurate element) by combining textual milestones
and visual observations. We devise three modes:
• Visual initial state + Textual query: Our main setting, as it accepts the output from the previous

high-level planning, and the initial state (i.e., screenshot) can be straightforwardly obtained.
• Textual query: A common setting in most existing works.
• Visual state transition (initial and end state): the most challenging setting requiring the model to

understand differences by screenshot transition and reverse its fine-grained actions.
Metrics: similar to the high-level planning phrase, we use the LLM as the critic for scoring.

● Atomic-action Execution. After planning, the agent should respond to the action narrations with
middle-level planning. We evaluate whether the model can accurately interpret narrations and perform
the corresponding actions. Specifically, we consider the four most common action categories:
• Click: For a narration like Click on the Insert button, the model must accurately localize

desired element on the screenshot by providing a bounding box or click position [x, y].

Metrics: (i) Dist := ∆
L , where ∆ is the pixel difference between the predicted location and the

ground-truth coordinate. L is the farthest distance from the ground-truth location to any of the four
screenshot vertices for adaptive normalization. (ii) Recall@d: In practice, a click is usually valid
when it falls within a very short distance, such as within a button area. We calculate the recall score
with a threshold d, which we empirically set to 100.

• Drag: can be approximated as a combination of a Click with a short-phrase movement, where the
model must infer both the initial and end coordinates.
Metrics: (i) Dist := 1

2

(
∆s
Ls + ∆e

Le

)
by jointly measuring the start and end distance, then averaging

them. (ii) Recall@d: This metric is more stricter than click, requiring both the start and end
predictions to be within a distance d; otherwise, the score is 0.

• Scroll: The scroll action assesses whether the desired elements are visible in the current screen-
shot, determining if a scroll action is needed (e.g., scroll up, scroll down, or no need).

5

[Visual input] [Visual output]

[Visual init state]

1. Click: Where is the ‘Effects’? 2. Scroll: Should I scroll up / down / not to find the
text box?

3. Drag: How to drag SAMPLE TEXT
from the last letter to the first letter.

4. Type / Press: Please type
“The cat scared the dog away”

High-level Planning:
How [Visual input] to [Visual output]?
GT:
A. Insert the title effect ‘Clean and Simple Lower Third’
with text ‘The cat scared the dog away’ at the beginning of
the first clip.
B. Make the second clip color warmer by moving the
gamma value closer to orange;

Middle-level Planning: [Init state] + Text
GT:
A1. Click on Effects
A2. Click on Titles
A3. Drag Clean and Simple Lower Third from original position to the
beginning of the cameraB.mp4. (Purpose: insert the title effect)
A4. Click on Inspector
A5. scroll up 5
A6. Drag SAMPLE TEXT from the last letter to the first letter.
(Purpose: select all text)
A7. Key board Type ‘The cat scared the dog away’

GT: [289, 66]

GT_Start: [1645, 393]
GT_End: [1415, 381]

GT: UP

GT:
The cat scared
the dog away

Env. Monitor

Action-level

Textual query:
Insert the title effect ‘Clean
and Simple Lower Third’
with text ‘The cat scared the
dog away’ at the beginning
of the “cameraB” video;

Figure 4: Illustration of VideoGUI hierarchical evaluation, containing high-level planning (visual query),
mid-level planning (visual state + text query), and action-level execution (with 4 types: click, scroll, drag,
type/press). We use DaVinci software as an example.

Metrics: We frame this QA as a multiple-choice question: ‘Could you advise whether I need to
scroll to see [target element]?’ with options: [A] No need to scroll; [B] Scroll up; [C] Scroll down.
To prevent bias, we shuffle the choices randomly and calculate the accuracy score.

• Type & Press: For type actions such as Type ‘Hello world!’, the agent must accurately
produce the string through keystrokes. For commands like Ctrl+C, it must execute multiple
keystrokes and button presses. Most GUI agents utilize PyAutoGUI [39] for these operations,
framing them as coding challenges that require verification for correctness.

Metrics: We design a Sandbox scheme by developing a mini simulator that executes the code
produced by the agent. Additionally, we use a monitor to listen for the keys pressed or typed. We
then compare the monitored results with the ground-truth results to check for matches. This setting
is evaluated using Recall (i.e., whether the GT is produced) and Precision (i.e., the count number of
GT and actual outputs to study redundancy).

4 Experiments

4.1 Baseline settings

We evaluate leading Multi-modal Large Language Models (MLLMs) including GPT-4-Turbo [37],
GPT-4o [37], Claude-3-Opus [40], Gemini-Pro-V [41], Qwen-VL-Max [42], and the open-source
CogAgent [35]. We also include text-only LLMs such as GPT-3.5-Turbo [43], LLama3-70B [44]and
Mixtral-8x22B [45]. Tab. 3 summarizes all evaluated models and their supported modalities.

6

4.2 Main Results on VideoGUI

In Tab. 3, we provide a comprehensive evaluation of baseline models on VideoGUI. Scores are
reported for high-level planning (visual query), middle-level planning (visual+text for MLLMs, or
text only for LLMs), and atomic action (covering four categories), as well as an overall score summing
these three. The lowest scores in high-level planning across all models highlight the challenge posed
by vision preview instructions. Overall, GPT-4o achieved the highest score of 39.4, excelling in all
three tracks. In addition, we incorporate a few simple agent baselines, which use GPT-4T/GPT-4o for
high-level/middle-level plan, while incorporate additional tools (i.e.,OCR or SoM) to aid its action
execution. The use of tools further boosts the overall model performance by ∼ 3 points for GPT-4o
and ∼ 5 points for GPT-4T. We next dive into the detailed evaluation of procedural planning and
action execution for a deeper analysis.

Model Support Interleaved Instructions? VideoGUI Evaluation (%)
Text Image (1f) Media (> 1f) High Plan Mid. Plan Action Overall

LLama3-70B [44] ✓ – 40.5 20.3 20.3
Mixtral-8x22B [45] ✓ – 36.0 19.6 18.6
GPT-3.5-Turbo [43] ✓ – 49.1 22.3 23.8
CogAgent [35] ✓ ✓ 4.4 21.8 7.4 11.2
Qwen-VL-Max [42] ✓ ✓ ✓ 5.1 35.7 28.9 23.2
Gemini-Pro-V [41] ✓ ✓ ✓ 7.9 28.6 23.8 20.1
Claude-3-Opus [40] ✓ ✓ ✓ 9.7 45.6 39.4 31.6
GPT-4-Turbo [37] ✓ ✓ ✓ 14.3 52.9 34.4 33.9
GPT-4o [37] ✓ ✓ ✓ 17.1 53.5 47.6 39.4

GPT-4T + OCR ✓ ✓ ✓ 14.3 52.9 49.2 38.8
GPT-4T + SoM [32] ✓ ✓ ✓ 14.3 52.9 44.2 37.1
GPT-4o + OCR ✓ ✓ ✓ 17.1 53.5 56.3 42.3
GPT-4o + SoM [32] ✓ ✓ ✓ 17.1 53.5 54.3 41.6

Table 3: Full evaluation on VideoGUI with Baselines and their supported interleaved instructions, which
might be a text query, an image (1 frame), or a media (more than 1 frame) such as two photos, one or two videos.
The bottom block features 4 simple agent baseline, which use GPT-4T/GPT-4o for high-level/middle-level plan,
while incorporate additional tools (i.e.,OCR or SoM) for action execution.

Model High-level Planning (0− 5) Middle-level Planning (0− 5)

Vision Text Vision & Text Vision Text Vision & Text

LLama3-70B [44] – 2.62 – – 2.02 –
Mixtral-8x22B [45] – 2.43 – – 1.80 –
GPT-3.5-Turbo [43] – 2.67 – – 2.46 –
CogAgent [35] 0.22 1.12 1.23 – 1.32 1.09
Qwen-VL-Max [42] 0.25 2.30 1.96 0.70 1.72 1.79
Gemini-Pro-Vision [41] 0.39 2.35 1.45 0.34 1.61 1.43
Claude-3-Opus [40] 0.48 2.54 2.17 0.66 2.26 2.28
GPT-4-Turbo [37] 0.71 2.57 2.55 1.49 2.57 2.65
GPT-4o [37] 0.86 2.68 2.46 1.78 2.45 2.68
Avg. by models 0.49 2.37 1.97 0.99 2.02 1.98

Table 4: Detailed evaluation on Procedural Planning, including both high-level and middle-level planning.
Each level is evaluated across three types of query formulation as discussed in § 3.2 (i.e.,vision, text, and vision
& text). Columns highlighted with colors are the primary evaluation settings. The maximum score is 5.

Procedural planning. Tab. 4 studies the impact of different query formulations for planning. On
both high and middle-level: (i) The vision-only setting is significantly challenging (especially for
high-level, 0.49 versus 2.37 for textual). Among the models, GPT-4o demonstrates the strongest
visual reasoning ability. (ii) All models, except CogAgent [35]with a small LLM [46], exhibit similar
performance on textual-only inputs, as the textual query concretely indicates the key operations or
effects type. This suggests that if we have clear and detailed textual instructions, a text LLM may be
sufficient for this stage. (iii) We do not observe a significant gain in the vision+text setting compared
to text-only, which requires strong interleaved UI perception abilities.

Action executions. Tab. 5 examines the impact of different atomic actions on model performance.
We summarize our findings as below. (i) Click: We prompt multi-modal LLMs to output coordinates
by providing screenshots with its resolutions, and we found that they can have a proper estimation,
with meaningful improvement over random score but with poor recall. Notably, closed-source LLMs

7

Model Grd.? 1. Click 2. Drag 3. Type / Press 4. Scroll Action
Dist. ↓ Recall ↑ Dist. ↓ Recall ↑ Recall Prec. Acc. Full

Random – 49.9 0.7 47.2 0.0 – – 31.3 8.0

LLMs
LLama3-70B [44] – – – – – 84.9 81.3 – 20.3
Mixtral-8x22B [45] – – – – – 82.6 78.5 – 19.6
GPT-3.5-Turbo [43] – – – – – 93.1 89.5 – 22.4

Multi-modal LLMs
CogAgent [35] ✓ 30.9 3.4 44.7 0.0 – – 26.6 7.5
Qwen-VL-Max [42] ✓ 46.8 0.0 42.0 0.3 84.3 73.0 42.2 28.9
Gemini-Pro-Vision [41] 40.7 5.0 40.8 0.0 86.4 82.2 7.8 23.8
Claude-3-Opus [40] 30.7 7.0 30.6 1.7 92.5 88.1 60.9 39.4
GPT-4-Turbo [37] 23.8 10.0 31.3 1.4 92.3 88.8 37.5 34.4
GPT-4o [37] 16.6 17.7 21.9 2.5 92.3 89.0 81.3 47.6

Modular methods: LLMs + Tools
GPT-3.5 + OCR [43] ✓ 16.8 48.7 36.4 5.5 93.1 89.5 56.3 50.0
GPT-4T + OCR [43] ✓ 14.8 55.1 26.6 12.2 92.3 88.8 40.6 49.2
GPT-4o + OCR [43] ✓ 12.0 60.1 (+42.4) 25.7 11.3 (+8.8) 92.3 89.0 82.8 (+1.5) 56.3 (+8.7)

GPT-4T + SoM [43] ✓ 19.1 30.6 25.3 4.1 92.3 88.8 53.1 44.2
GPT-4o + SoM [32] ✓ 15.7 35.9 (+18.2) 22.9 3.0 (+0.5) 92.3 89.0 89.0 (+7.7) 54.3 (+6.7)

Table 5: Detailed evaluation on Actions Executions. We report model performance on four types of atomic
action execution. The full score is the sum of Click recall, Drag recall, Type precision, and Scroll accuracy. Grd.
indicates whether the model has explicit grounding ability such as output element’s coordinates. In the bottom
half, we equip LLMs with tools like SoM [32] and OCR [47].

demonstrate better grounding abilities than grounding-based models such as CogAgent; Enhancing
LLMs with tools such as OCR [47] or SoM [32] significantly improves model performance. Notably,
for the text-based GPT-3.5 with OCR, it achieves a 48.7 recall. (ii) Drag: To perform Drag, it requires
models to accurately localize the movement at both the start and end points. The best model, GPT4-o
with OCR, yields only 11.3 recall. For LLMs with tools, OCR brings 8.8 recall gain over the base
model, which is even more helpful than SoM as it helps to precisely localize text for the button,
while SoM often suffers from poor segmentation results. (iii) Type / Press: Regarding keyboard
activity, most models achieve good scores, as large-scale instruction-tuned LLMs generally is decent
at coding, making the LLMs even more competent for this task. (iv) Scroll: For Scroll, models must
infer not only whether an element appears but also its order relative to other elements. GPT-4o is the
top-performing model, while Gemini scores extremely low, often preferring outputs without scrolling.

4.3 Performance by Task Difficulty.

P
P

T

P
S

A
E

P
R

S
D

C
apC

ut

R
unw

ay

D
aV

inci

0

0.5

1

H
ig

h
P

la
n.

 s
co

re
 (

V
)

0 10 20 30
0

0.5

1

1.5

2

Action / Task

M
id

. P
la

n.
 s

co
re

 (
V

+T
)

Figure 5: Top: High plan.
score (V) by diff. software;
Bottom: Mid. plan score
(V+T) by action number.

High planning by different software. Fig. 5 (top) shows mid-level
plan scores (visual query) across different software. Models perform
highest on Powerpoint, which is more commonly used than others. On
æ and Photoshop, model performance drops significantly as they are
professional software. It is worth mentioning that being web-based,
Runway and Stable Diffusion remains challenging because these novel
applications are relatively new to the MLLMs.

Middle planning by action number. Fig. 5 (bottom) shows the mid-
level planning scores (visual + text query) by the number of actions
per task. Scores tend to decrease as the number of actions increases,
demonstrating the difficulty of long procedural GUI tasks.

4.4 Qualitative Results

In Fig. 6, we visualize model performance and failure cases. In (a)
High-level planning, GPT-4o and Gemini-Pro-V successfully predict
the sub-tasks for the slide with the 3D model. GPT-4o also accurately
identifies the Morph transition effect, achieving the best score. In (b)
Mid-level planning, both models inserted and adjusted the 3D Shiba Inu
model. However, Gemini-Pro-V introduces unnecessary operations, such
as shape styles and formatting, leading to discrepancies in positioning

8

High-level Planning (Final visual effect)
How to create such effect in Powerpoint?

GT:
1. Set up a blank slide with a gradient fill background
2. Insert a 3D model of a shiba lun dog and adjust its size and
position
3. Add a text 'Shiba Inu' in title box
4. Duplicate the first slide
5. Drag the title box to bottom with text 'Side view
6. Drag the dog to center and rotate to right
7. Apply the Morph transition to all slides;

GPT-4o [4]
1: Insert a 3D model of a Shiba Inu.
2: Add text 'Shiba Inu' and position it next to the 3D model.
3: Apply the 'Fly-in' animation to the 3D model from the left.
4: Add a second slide with a side view of the Shiba Inu 3D model.
5: Add text 'Side view' and position it below the 3D model.
6: Apply the 'Morph' transition between the two slides.

Gemini-Pro-V [2]
1. Insert a 3D model of a Shiba Inu dog.
2. Apply a "Rotate" animation to the dog, specifying the "Side" direction.
3. Insert a text box with the word "Side view" and position it below the dog.

Claude-3-Opus [2]
1. Insert an image of a Shiba Inu dog.
2. Add the text "Shiba Inu" next to the image.
3. Apply a 3D rotation effect to the dog image, rotating it from a side view to a front view.

Time

(a) High-level Planning

Middle-level Planning (Init. visual state + Text)
Insert a 3D model of a shiba lun dog and adjust its size and position

GT:
1. Click on Insert
2. Click on 3D Models
3. Click on Stock 3D Models
4. Keyboard Type dog then Enter
5. Click on Shiba-Inu dog with motion
6. Click on Insert
7. Drag the the dog to top-left
8. Drag the the lower right corner to enlarge the dog

GPT-4o [5]
1. Click the 'Insert' tab in the ribbon at the top of the screen.
2. Click the '3D Models' button in the 'Illustrations' group.
3. Select 'From Online Sources...' from the dropdown menu.
4. In the search bar, type 'shiba inu dog' and press Enter.
5. Browse the results and click on the desired 3D model of a shiba inu dog.
6. Click the 'Insert' button to add the 3D model to the slide.
7. Click on the 3D model to select it.
8. Use the corner handles to adjust the size of the 3D model by clicking and dragging.
9. Click and drag the 3D model to position it in the desired location on the slide.

Gemini-Pro-V [3]
1. Click the 'Insert' tab.
2. In the '3D Models' group, click the 'From File' button.
3. In the 'Insert 3D Model' dialog box, navigate to the folder containing the shiba inu
dog model.
4. Select the 'shiba_inu.fbx' file and click the 'Insert' button.
5. The shiba inu dog model will be inserted into the slide.
6. Click and drag the model to reposition it.
7. Use the 'Scale' tool to resize the model.
8. Click the 'Format' tab.
9. In the 'Shape Styles' group, click the '3-D Model Styles' button.
10. In the '3-D Model Styles' gallery, select the desired style for the model.
11. Click the 'Close' button to close the 'Format Shape' dialog box.
12. The shiba inu dog model will be updated with the selected style.

Init. visual state Final visual state

(b) Middle-level Planning

Action Execution (Click)
Click on ‘3D Models’ GPT-4V-SoM

Dist: 0.02, Recall: 1
GT GPT-4V

Dist: 0.16, Recall: 0
Gemini-Pro-V

Dist: 0.32, Recall: 0
CogAgent

Dist: 0.2, Recall: 0

Action Execution (Drag)
Drag to select the text 'Shiba Inu'
from right to left

GT GPT-4V-SoM
Dist:0.19, Recall: 0

Action Execution (Scroll)
Should I scroll up / down / not to
find the ‘Calibri font type’?

GT: Down
GPT-4o: Down
GPT-4V: Up
Gemini-Pro-V: No need
Claude-3-Opus: No need

(c) Atomic Execution with Click, Drag and Scroll.

Figure 6: Qualitative Results on VideoGUI with Powerpoint software. The color green indicates the human
references (GT), while red indicates wrong model predictions.

and scaling. In (c) Atomic execution, models are assessed on precise actions. In Drag, GPT-4V
selects part of the letters, but as the pixel distance is larger than the threshold, it still receives a recall
of 0.

9

4.5 Simulator Experiments

To simulate the real application scenario, we use the best performing LLM GPT-4o and build a simple
agent baseline as shown in Fig. 7. We evaluate this agent on the most popular software (Powerpoint)
to study its behavior.

Planner
(GPT-4o)

Parser
(GPT-

4o+OCR)

Actor
(GPT-4o)

i+1-th State (screenshot)

i+1-th observation

i-th
Mid. planning

i-th
Action

Seq

Query
(Text /
Vision)

High
Planning

Figure 7: Our Minimalist GUI Agent Framework consists of three components: a Parser, a Planner, and
an Actor. The Planner receives input queries, which may be either vision previews or text instructions. It then
conducts high-level planning and generates mid-level plans for the Actor. The Actor executes these plans by
performing a sequence of actions. After action execution, the current state (screenshot) is captured and sent back
to the Parser to gather observations. These observations are then relayed to the Planner for subsequent planning.

Model Settings VideoGUI Eval. Full task Eval.
High Plan. Mid Plan. Action Success Rate Rank (Arena) ↓

GUI Agent w/ GPT-4o [37]
Orig. Query (V) 17.1 53.5 56.3 0 2.50
w. GT High Plan. 100.0 53.5 56.3 0 1.88
w. GT High & Mid Plan. 100.0 100.0 56.3 0 1.38

Table 6: Simulator Evaluation on VideoGUI’s PPT full tasks.

Tab. 6 presents the model performance on full task execution in our simulator environment. We see
that completing the full task is extremely challenging for the GPT4o agent, with a notable 0 success
rate for all variants. This again supports the design of our hierarchical evaluation, as the zero success
rate simply implies the model/agent fail to execute the full task, without enough information in where
they succeed or fail, or even how these models/agents perform relatively to each other. Therefore,
we introduce another metric, Rank (Arena), which compares the final outcome of their execution.
Specifically, we ask human to perform manual inspection, and rank the comparing models by the
similarities between the final results and the GT. We found that when injected with GT planning
(both high or mid.-level), the full-task execution can be significantly improved. These results echoes
our observations of low model performance in high-level and mid-level planning in the main paper,
which are the bottlenecks of successful full-task executions.

We visualize the final outcome of the three agent variants in Fig. 9 and Fig. 11.

Model Settings VideoGUI Eval. Subtask Eval.
Mid Plan. Action Success Rate (%) Avg. Round ↓

GUI Agent w/ GPT-4o [37] Orig. Query (V+T) 53.5 56.3 20.0 5.4
w. GT Mid Plan. 100 56.3 50.0 3.3

Table 7: Simulator Evaluation on VideoGUI’s PPT subtasks.

In Tab. 7, we examine the performance of the GPT-4o agent in subtask competitions. Since subtasks
do not necessitate high-level planning, we primarily investigate two variants: one with and one without
manually provided middle-level planning, referred to as action sequences. Our study yields two key
findings: (i) Despite the simplicity of these tasks, the original GPT-4o agent achieves a success rate
of only 20.0%. With the assistance of manual plans, there is a 30% increase in success rate. (ii)
For simple subtasks, the agent typically requires more extensive procedural execution compared
to manual demonstrations (+2.1), which often represent the optimal pathway. This redundancy is
exacerbated in complex tasks. Therefore, enhancing planning capabilities is essential for achieving
efficient system with accurate success rates.

10

Figure 8: Final effect in Powerpoint files.

(a) GPT-4o (b) GPT-4o w. GT High Plan (c) GPT-4o w. GT High+Mid. Plan

Figure 9: Example of final outcome with our simple GPT-4o agent in simulated environment. When
provided with GT planning (c), the GUI agent successfully inserts the 3D model. However, it still fails to match
the background color.

5 Conclusion

In this work, we introduced VideoGUI, a multi-modal benchmark for advanced GUI tasks sourced
from high-quality instructional videos targeting professional and novel software. VideoGUI, with
its long procedural tasks, hierarchical manual annotations, and well-established evaluation metrics,
provides clear signals for existing limitations and areas for improvement. By comparing state-of-
the-art models, we highlight the challenges of visual-oriented GUI automation and the potential of
instructional videos for advancing GUI task automation.

A Experimental Settings

A.1 Data Collection Settings

We use OBS Studio [48] software to record the demonstration videos and capture the user’s screen-
shots. Notably, in the screenshots, the user’s cursor is not recorded, which is beneficial as the
screenshots can be used directly without revealing the target coordinates. We use pynput to monitor
detailed user activity metadata, such as click location [x, y], typed content, and scroll distance.

In Fig. 12, we display our manually labeled interface. Here, the annotator watches their key recording
screenshots, with active regions such as the cursor coordinates highlighted in red. The annotators are
then asked to enter the element name (e.g., "Drop-down menu of font color").

11

Figure 10: Final effect in Powerpoint files.

(a) GPT-4o (b) GPT-4o w. GT High Plan (c) GPT-4o w. GT High+Mid. Plan

Figure 11: Example of final outcome with our simple GPT-4o agent in simulated environment. Guided by
the GT planning, both (b) and (c) successfully insert the textual background, while the (c) can accurately type
‘98%’.

A.2 Baseline Details

Model Ref. link Version (e.g., model id)

LLama3-70B [44] deepinfra meta-llama/Meta-Llama-3-70B-Instruct
Mixtral-8x22B [45] deepinfra mistralai/Mixtral-8x22B-Instruct-v0.1
GPT-3.5-Turbo [43] OpenAI gpt-3.5-turbo
CogAgent [35] CogAgent CogAgent-18B
Qwen-VL-Max [42] Aliyun qwen-vl-max
Claude-3-Opus [40] Anthropic claude-3-opus-20240229
Gemini-Pro-V [41] Google gemini-pro-vision
GPT-4-Turbo [37] OpenAI gpt-4-turbo
GPT-4o [37] OpenAI gpt-4o

A.3 Evaluation Settings

Click. We detail how we calculate the distance metric. Assume we have a ground-truth point [xo, yo]
while the screenshot size is H ×W .

• If the model prediction is a bounding box [x1, y1, x2, y2] (e.g.,CogAgent [35] or Qwen-VL-Max
[42]):

We cannot only take the center of the bounding box as the click target for evaluation because it does
not account for the area of the bounding box. As illustrated in Fig. 13 (a), if the center point is very
close to the ground truth but the bounding box cover a large area, the distance between the center

12

https://deepinfra.com/
https://deepinfra.com/
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://github.com/THUDM/CogVLM
https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-qianwen-vl-plus-api?spm=a2c4g.11186623.0.0.645b7794Zi8mEy
https://docs.anthropic.com/en/docs/models-overview
https://deepmind.google/technologies/gemini/pro/
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4o

Figure 12: Illustration of Manual annotation tools. The user are asked to watch their keyframe in their recording,
and prompt to provide the element name regarding action.

point and the groundtruth would be small. Therefore, we design our metric to penalize for the area
of the bounding box. Specifically, we calculate the distance between the ground truth and the four
corners of the bounding box and then take the average. For the predicted bounding box, the average
distance d is calculated as follows:

d =
1

4

(√
(xo − x1)2 + (yo − y1)2 +

√
(xo − x1)2 + (yo − y2)2

+
√

(xo − x2)2 + (yo − y1)2 +
√

(xo − x2)2 + (yo − y2)2
)

• If the model prediction is a coordinate [x1, y1] (e.g.,as in GPT4V+SoM [32]):

We directly adopt the distance d calculated by:

d =
√

(xo − x1)2 + (yo − y1)2

To normalize the pixel-level distance d to 0− 1, a simple way is to divide d by the maximum length
in the screenshot, such as

√
H2 +W 2. But in practice, the maximum length should be the distance

between the ground-truth point and the farthest vertices, so we use that for normalization. The
comparison between the two normalization methods is illustrated in Fig. 13 (b).

Drag. Drag is a combination of Clicks, so we simply adopt the click metric for the start and end point
of drag, and take the average. The score is calculated as Dist := 1

2

(
ds

Ds
+ de

De

)
where ds is the pixel

difference between predict start and GT start, while Ds is the farthest vertices for the GT start; de is
the pixel difference between predict end and GT end, while De is the farthest vertices for the GT end;

For Recall, it is calculated by:

Recall (start, end) =
{
1 if Recall (start)& Recall (end)
0 otherwise

Type / Press. For type/press, we evaluates whether the model can generate correct and efficient code
to control keyboard activity. First, we prompt LLMs to write code for typing activity, and then we
use pynput to monitor the keyboard outputs by executing the code. In Fig. 14, we show the pipeline
for evaluating type/press activity. The model must generate the correct actions (e.g., Ctrl+F) with
high precision, avoiding unnecessary actions such as redundant Ctrl presses.

Scroll. Fig. 15 illustrates how we construction QA pairs to evaluate on scroll action. Before scrolling,
the target element is assumed to be outside of the visible area, prompting for a scroll action. After
scrolling, the target element is assumed to be within the visible area, ready for the next action
(e.g.,Click shown in the figure). Thereby, we can construct the QA pairs under these assumptions.

13

GT: [xo, yo]

[x1, y1] [x2, y2]

[x2, y1][x1, y1]

Pred. center point

Pred. Bbox

Calculate distance by four corners or center point?
GT: [xo, yo]

Pred: [x1, y1]

D1 = farthest vertices
D2 = sqrt (H^2+W^2)

d

Normalize d by D1 or D2?

Figure 13: (a) Illustration of why taking the distance btween the center point of a bounding box and
groundtruth is not a proper measure of model performance on click. As shown, the predicted bounding box
center point is quite close to the ground-truth point, but the predicted bounding box area is large. (b) Illustration
of distance normalization. To normalize the distance d to 0− 1, a more proper term should be D1 (farthest
vertices) rather than D2.

ModelQuery Code writing
(pyautogui)

I'm working on a computer task
involving typing or pressing keys.

Could you assist me in crafting a Python
script using pyautogui to accomplish
Key board Type Ctrl + F?

I've already set up the environment.
Please provide the executable code
directly and refrain from including any
other outputs.

Certainly! Here is the Python script
using pyautogui to simulate pressing
Ctrl + F:
```python
import pyautogui

# Press and hold the 'ctrl' 
key
pyautogui.keyDown('ctrl')

# Press the 'f' key
pyautogui.press('f')

# Release the 'ctrl' key
pyautogui.keyUp('ctrl')
```

Monitor
(pynput)

Code Executing...
Output: ['ctrl_l', 'ctrl+f']
GT: ['ctrl+f']

Recall: 1
Prec: 1/2

Figure 14: Illustration of how we evaluate the key / press action.

For each scroll, we create two QA pairs with the following GT answers: “scroll (up/down)” for the
screenshot before scrolling and “no” for the screenshot after scrolling. We randomly shuffle the order
of answer options to make the final testing samples.

B Benchmark Statistics

Software distributions In Tab. 8, we present the software distribution on VideoGUI.

Manual Recording Cost. In Fig. 16a, we present the screenshot resolution distribution primarily
used for action execution.

Screenshot’s resolutions. In Fig. 16b, we present the distribution of manual recording time per
subtask, with an average of 55 sec.

World Cloud. In Fig.17, we present VideoGUI’s Word Cloud, where the most frequent words are
atomic actions (e.g., click, drag, type) and commonly used proper nouns (e.g.,, layer, background,
pannel) in the GUI.

14

Scroll
down

Before Scrolling, we assume that
[the target element] is not within the screenshot.

After Scrolling, we assume that
[the target element] should be inside the screenshot.

Next Action: Click [the maiandra GD button]

Question: Should I scroll to find the maiandra GD
button?
Answer: No

Question: Should I scroll to find the maiandra GD
button?
Answer: Scroll down

Figure 15: Illustration of how we create the scroll QA pair.

Software Platform # Full Task # Subtask # Action per
full task

Action per
subtask

Powerpoint Windows 8 52 47.6 8.5
StableDiffusion Web + Windows 10 69 19.0 4.0
Runway Web 11 63 24.3 4.7

Photoshop Windows 10 69 19.0 4.0
After Effects Windows 13 67 29.3 7.2
Premiere Pro Windows 7 38 15.4 4.5
Capcut Web + Windows 10 46 9.4 3.6
DaVinci Windows 11 44 18.8 4.7

YouTube Web 0 13 0 4.3
Web Stock Web 0 12 0 9.7
VLC player Windows 0 12 0 9.2

Total – 82 463 23.7 5.8
Table 8: VideoGUI’s software distribution.

1600 x 2560
59.1%

1080 x 1920
38%

2160 x 3840
2.83%

(a) Screenshot resolution distribution.

100 200 300 400 500

0

0.01

0.02

Record time (s) per Subtask

(b) Recording duration per subtask.

Figure 16: Distribution of (a) Screenshot resolution and (b) Human recording time.

15

Figure 17: VideoGUI World Clouds

16

C Dataset Examples

Data samples. In this section, we display the visual-preview data samples, which are mainly focused
on visual creation or editing.

Visual preview

Full task ● High-level Plans ● Mid.-level Plans ● Atomic Actions
Visual query: How to create
this effect in Powerpoint?
Textual query: Create a slide
that displays a large percentage
figure of "98%" against a tex-
tured, beige background that
appears to be fabric or canvas.
The numerals are rendered in
a bold, stylized font. The vi-
sual effect in this image is a
wave-like effect. The blue per-
centage numerals appear to be
rising out of the beige fabric-
like background, creating a dy-
namic appearance. This gradi-
ent of wave creates a sense of
depth and dimensionality, mak-
ing the wave appear to have
volume and curvature. The
lighter blue at the top catches
the light more, giving an illu-
sion of the wave crest rising
up, while the darker blue be-
low suggests shadow and reces-
sion.

a. Format the background for
the canvas
b. Change the background tex-
ture to parchment. Add a text
box, add 98%, increase the font
size and bold effect
c. Change the background tex-
ture to papyrus, increase the
font size of 98%, change color
to white, center it in the middle
d. Add a rectangle, remove out-
line, change the texture to pa-
pyrus
e. Send the rectangle to the
back
f. Select the rectangle and
the text. Merge shape and
subtract, add buttom right
shadow
g. Add shapes (e.g. Ovals) in
between the two layers
h. Duplicate the slide, place it
nicely and add Morph transi-
tion effect

f1. Drag to select the rectangle
and text ’98%’
f2. Click on Shape Format but-
ton
f3. Click on Merge Shapes but-
ton
f4. Click on Subtract button
f5. Click on Presets button
f6. Click on shadow with but-
tom right

d1. Click, [322, 424]

Table 9: Video Creation (i.e., animation) example with Powerpoint.

Visual preview

Start End

Full task ● High-level Plans ● Mid.-level Plans ● Atomic Actions
Visual query: How to trans-
form from [start] to [end] in
Premiere Pro?
Textual query: Add a rectan-
gle mosaic mask to the red bill-
board and track it.

a. Drag the timestamp to the
beginning of the video
b. Add Mosaic effect on the
top clip
c. Adjust the granularity of the
Mosaic to 120
d. Add a rectangle mask to
cover the bilboard and track it

b1. Click on Effects
b2. Click on Search box in Ef-
fects panel
b3. Key board Type Mosaic
b4. Click on ’Mosaic’ effect
b5. Drag the Mosaic effect to
the top clip.

b4. Click, [1667, 410]

Table 10: Video Editing example with Premiere Pro.

17

Visual preview

Full task ● High-level Plans ● Mid.-level Plans ● Atomic Actions
Visual query: How to create
this effect in Runway?
Textual query: Create a video
about "A man in a dark green
jacket stands in the center of
a futuristic industrial setting
with yellow machines and mon-
itors, under bright overhead
lights, creating a cinematic
portrait effect" with the dolly
zoom effect.

a. Open Text/Image to Video
Tool
b. Generate preview picture
with text "A man in a dark
green jacket stands in the cen-
ter of a futuristic industrial set-
ting with yellow machines and
monitors, under bright over-
head lights, creating a cine-
matic portrait effect.
c. Select the third image as the
image input
d. Adjust camera settings.
Set Zoom to -3
e. Select the background in
Motion Brush. Set its Proxim-
ity to 10
f. Select the subject in Motion
Brush. Set its Proximity to 2
g. Generate the video

d1. Click on Camera Set-
tings.
d2. Click on the value of
Zoom.
d3. Key board Type -3

d1. Click, [50, 840]

Table 11: Video Creation example with Runway.

Visual preview

Start End

Full task ● High-level Plans ● Mid.-level Plans ● Atomic Actions
Visual query: How to trans-
form from [start] to [end] in
StableDiffusion-WebUI?
Textual query: Replace the
512*512 photo of a cat to a
720*720 photo of dragon by
DPM++ method.

a. Open img2img Tool and
drag photo of cat into the file
upload box
b. Put "image of a dragon" into
prompt box
c. Put "cartoon" into negative
prompt box
d. Set "Sampling method" to
"DPM++ 2M Karras"
e. Set Width to 720 and Height
to 720
f. Set Sampling steps to 25,
Batch Size to 4 and CFG Scale
to 4
g. Generate the image

d1. scroll down 7
d2. Click on options of Sam-
pling method.
d3. Click on "DPM++ 2M".
d4. Click on options of Sched-
ule type.
d5. Click on Karras.

d3. Click, [229, 277]

Table 12: Image Editing example with StableDiffusion-WebUI.

18

Visual preview

Start End

Full task ● High-level Plans ● Mid.-level Plans ● Atomic Actions
Visual query: How to trans-
form from [start] to [end] in
Adobe Effects?
Textual query: Isolate the dog
with Green Screen.

a. Select and apply Keylight
effect to the BostonTerrier.mov
layer
b. Use the eyedropper tool to
select the green background
c. Adjust Keylight view mode
to Screen Matte
d. Modify Screen Gain and
Screen Balance parameters
e. Adjust Clip Black and Clip
White parameters in Screen
Matte
f. Switch view mode back
to Final Result and hide back-
ground layer

e1. Click on Expand icon of
Screen Matte
e2. Click on Parameter of
Clip Black 0.0
e3. Key board Type 10
e4. Click on Parameter of Clip
White 100.0
e5. Key board Type 85

e2. Click, [193, 401]

Table 13: Video Editing example with Adobe Effects.

Visual preview

Start End

Full task ● High-level Plans ● Mid.-level Plans ● Atomic Actions
Visual query: How to trans-
form from [start] to [end] in
Photoshop?
Textual query: Use quick se-
lection tool to put the pencil in
the black background.

a. Use quick selection tool to
select the pencil
b. Create a mask
c. Create a solid black back-
ground layer
d. Refine the mask. Set the
smooth to 8, Feather to 7 px,
Contrast to 72%, and Shift
Edge to -3%;

a1. RightClick on Quick Se-
lection Tool.
a2. Click on Quick Selection
Tool.
a3. Drag the orange pencil
from right to left. (Purpose: se-
lect the orange pencil)

b4. RightClick, [25, 271]

Table 14: Image Editing example with Photoshop.

19

Visual preview

Start End

Full task ● High-level Plans ● Mid.-level Plans ● Atomic Actions
Visual query: How to trans-
form from [start] to [end] in
DaVinci?
Textual query: Use Depth
Map to blur the background.

a. Add a serial node with
depth map
b. Add a serial node with lens
blur
c. Connect nodes and inverse
the depth map node
d. Disable Depth Map Preview

a1. Click on Color panel.
a2. Click on Effects.
a3. Click on Search bar in Ef-
fects panel.
a4. Key board Type Dep
a5. RightClick on the video
node in node editor.
a6. Click on "Add Node > Add
Serial".
a7. Drag Depth Map from Ef-
fects panel to video node 02.
(Purpose: add Depth Map to
the video node 02)

a7. Drag, [2175, 305]→[1758,
370]

Table 15: Video Editing example with DaVinci.

Visual preview

Start End

Full task ● High-level Plans ● Mid.-level Plans ● Atomic Actions
Visual query: How to trans-
form from [start] to [end] in
CapCut?
Textual query: Add Stickers
"Heart", Effects "Blur" and Fil-
ters "Glow" to the video.

a. Add "Heart" Sticker to
the video
b. Add "Blur" Effect to the
video
c. Add "Glow" Filter to the
video

a1. Click on Click on Stickers
Tool.
a2. Drag "heart" from Stick-
ers Pool to video track. (Pur-
pose: add "heart" to the
video track)

a2. Drag, [599, 464]→[265,
1197]

Table 16: Video Editing example with CapCut.

20

D Prompts Templates

Procedural Planning. In Tab.17 and Tab.18, we present the prompt templates for high-level and
mid-level planning, respectively. These templates are conditioned on the query formulation, such as
whether the start or end visual effects are provided, or paired with the textual query.

def get_high_prompt(vis_start=True, vis_end=True, txt=None,
software=None):

PROMPT = f"You are a software assistant professional at {software}."

if vis_start and vis_end:
PROMPT += "Given two sequence of image frames about the initial visual effect and

the final visual effect"
elif vis_end:

PROMPT += "Given a sequence of image frames about the final visual effect"
else:

PROMPT += " You are provided"

if txt:
PROMPT += " with a task textual description"

PROMPT += " Your goal is to recognize the effect software demonstrates and pinpoint the
key functions or operations, necessary to replicate this distinctive pattern."

PROMPT += """
High-Level Planning:
Distill the process into essential stages or components, emphasizing the unique functions
or operations, such as a specific design technique. Concentrate on brevity and precision in
describing each stage, highlighting the unique aspects that contribute to the overall effect.

Please format your response as follows (we use Powerpoint as an example):
“‘
1: Insert a Circle and Change its color as black.
2: Add Text ’Happy’ inside the Circle.
3: Apply the ’Fly-in’ animation for the Circle.
”’

Each stage should be concise yet comprehensive, focusing on the key functionalities or
operations that lead to the visual outcome in PowerPoint. Notably, avoid detailed step-by-step
actions. Strive to keep the number of stages as few as possible, only including those that are
crucial for achieving the unique effect.
"""

if txt:
PROMPT += f"**This is the textual descriptions** {txt}"

return PROMPT

Table 17: High-level Planning Prompt conditioned on the interleaved instruction query.

Action – Click. In Tab. 19, we show the template used by LLM to estimate click coordinates based
on image resolution. With SoM’s assistance, we use the Tab. 20 template to predict the mark index.
With OCR’s assistance, we use the Tab. 21 template.

Action – Drag. In Tab. 22, we show the template used by LLM to estimate drag coordinates based
on image resolution. With SoM’s assistance, we use the Tab. 23 template to predict the start and end
mark index. With OCR’s assistance, we use the Tab. 24 template.

21

def get_prompt(vis=True, txt=None, software=None):

PROMPT = f"You have been assigned the task of planning a sequence of actions in
{software} software to achieve a desired goal state based on certain conditions. Your
objective is to outline the fundamental actions needed."

if vis and not txt:
PROMPT += "**You are provided with two screenshots which indicate the initial state

as well as goal state.**"

elif vis and txt:
PROMPT += "**You are provided with a screenshot to indicate your initial state.**"

if txt:
PROMPT += f"**The goal is: {txt}**"

PROMPT += """
Please format your response as follows:
“‘
1. Click the ’xxx’.
2. Type ’yyy’.
3.: Click the ’zzz’.
”’
Ensure that each step is clearly described to facilitate step-by-step reproduction of the actions.
"""
return PROMPT

Table 18: Middle-level Planning Prompt conditioned on the interleaved instruction query.

I’m working on a computer task that involves clicking on some elements (like a button).
You are provided with a screenshot with a resolution of width: {width} and height: {height}.
Could you assist me in navigating to the "{element}"?
Please provide the location in the following format:
“‘ [x, y] ”’
Ensure that your response contains only the coordinates.

Table 19: Click action template that prompts LLMs output click’s coordinate [x,y]

The screenshot has been divided into areas and marked with numbers. Where is {element}?
Answer by mark index like [x].

Table 20: Click action template that prompts LLMs (with SoM [32]) output coordinate.

Action – Type / Press. In Tab. 25, we present the template used by LLM to generate pyautogui code
for keyboard actions.

Action – Scroll. In Tab. 26, we present the template used by LLM to predict scroll action, which is
used for high-level planning. For mid-level planning, we remove the commentary component.

Evaluation. In Tab. 27, we display the evaluation template for GPT-4-Turbo [37].

22

I’m working on a computer task that involves clicking on some elements (like a button).
Below are the OCR detection results (element name - bounding coordinates [[x1, y1], [x2,
y2]]), which are separated by a colon ";".
{ocr_result}
Could you assist me in navigating to the "{element}"?
Please provide the location in the following format:
“‘ [x, y] ”’
Ensure that your response contains only the coordinates.

Table 21: Click action template that prompts LLMs (with OCR [47]) output click’s coordinate [x,y]

I am working on a computer task that involves dragging elements from one place to another
You are provided with a screenshot with a resolution of width: {width} and height: {height}.
Could you assist me in navigating for action "{narration}"?
Please provide the location in the following format:
“‘ [x1, y1] -> [x2, y2] ”’
where [x1, y1] are the start coordinates and [x2, y2] are the destination coordinates.
Ensure that your response contains only the coordinates.

Table 22: Drag action template that prompts LLMs output drag’s coordinate [x1,y1] -> [x2, y2].

The screenshot has been divided into areas and marked with numbers.
To assist with dragging an item, please provide the start and end mark numbers.
How to {element}? Provide the mark indices as follows:
“‘ [x]->[y] ”’
where [x] represents the starting index and [y] represents the ending index.

Table 23: Drag action template that prompts LLMs (with SoM [32]) output SoM mark.

I am working on a computer task that involves dragging elements from one place to another
Below are the OCR detection results (element name - bounding coordinates [[x1, y1], [x2,
y2]]), which are separated by a colon ";".
{ocr_result}
Could you assist me in navigating for action "narration"?
Please provide the location in the following format:
“‘ [x1, y1] -> [x2, y2] ”’
where [x1, y1] are the start coordinates and [x2, y2] are the destination coordinates. Ensure
that your response contains only the coordinates.

Table 24: Drag action template that prompts LLMs (with OCR [47]) output drag’s coordinate [x1,y1] -> [x2,
y2].

23

I’m working on a computer task involving typing or pressing keys.
Could you assist me in crafting a Python script using pyautogui to accomplish {goal}? where
the key input element is "{element}".
I’ve already set up the environment.
Please provide the executable code directly and refrain from including other outputs or ad-
ditional code blocks. Ensure that your response contains only one code block formatted as
follows:
“‘python
import pyautogui
pyautogui.press(’ctrl’)
“‘

Table 25: Type / Press action template that prompts LLMs output pyautogui code.

I’m currently engaged in a computer-based task and need your assistance.
You are provided with an image of my screenshot.
Could you advise whether I need to scroll to see the complete element "{element}"? Please
note that even if the element appears partially, I still need to scroll to see it completely.

’A’: ’No need to scroll.’, ’B’: ’Scroll down.’, ’C’: ’Scroll up.’

Please select the appropriate option and format your response as follows (Wrap options in
square brackets):
“‘ [A] ”’

Notably, only output options with square brackets

Table 26: Scroll action template that prompts LLMs to output a decision like scrolling (up/down) or not.

24

You are tasked with evaluating the quality of a software procedure plan. Assess the prediction
provided by an AI model against the human-generated ground truth and assign a correctness
score to the prediction.
Evaluation Criteria:
1. Conciseness and Clarity: The procedure plan should be straightforward and to the point.
2. Element Accuracy: Pay attention to the precision of specific details like types of animation,
text content, and design elements (e.g., 3d shape, color, shape). The prediction should
accurately reflect these aspects as mentioned in the ground truth.
3. Commentary: Provide a brief commentary in your response summarizing the accurate and
inaccurate aspects of the prediction as evidence to support your scoring decision.

Correctness Score (must be an integer):
- 0: Completely incorrect
- 1 to 3: Partially correct (with 1 being least accurate and 3 being more accurate)
- 4 to 5: Fully correct (with 4 being good and 5 being perfect)

Ground truth:
{GT}

Prediction:
{Pred}

Considering the detailed elements and the overall process, please format your response as
follows:
[comment]: Summary of evaluation.
[score]: x

Table 27: Evaluation Prompt Template

25

References

[1] OpenAI. Gpt-4 technical report, 2023.

[2] Microsoft copilot. https://copilot.microsoft.com/. Accessed: 2024-04-15.

[3] Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck,
and Aleksandra Faust. A real-world webagent with planning, long context understanding, and
program synthesis. arXiv preprint arXiv:2307.12856, 2023.

[4] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

[5] Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. Multimodal web navigation with instruction-finetuned foundation models. arXiv preprint
arXiv:2305.11854, 2023.

[6] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. Advances in Neural Information
Processing Systems, 36, 2024.

[7] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of
bits: An open-domain platform for web-based agents. In International Conference on Machine
Learning, pages 3135–3144. PMLR, 2017.

[8] Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and
Duyu Tang. Android in the zoo: Chain-of-action-thought for gui agents. arXiv preprint
arXiv:2403.02713, 2024.

[9] Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. Comprehensive cognitive llm agent for smart-
phone gui automation. arXiv preprint arXiv:2402.11941, 2024.

[10] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android
in the wild: A large-scale dataset for android device control. arXiv preprint arXiv:2307.10088,
2023.

[11] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang,
Yunhao Liu, Yaqin Zhang, and Yunxin Liu. Empowering llm to use smartphone for intelligent
task automation. arXiv preprint arXiv:2308.15272, 2023.

[12] Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua,
Junning Zhao, Qian Liu, Che Liu, et al. Openagents: An open platform for language agents in
the wild. arXiv preprint arXiv:2310.10634, 2023.

[13] Longtao Zheng, Zhiyuan Huang, Zhenghai Xue, Xinrun Wang, Bo An, and Shuicheng Yan.
Agentstudio: A toolkit for building general virtual agents. arXiv preprint arXiv:2403.17918,
2024.

[14] Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu,
Urvashi Khandelwal, Kenton Lee, and Kristina N Toutanova. From pixels to ui actions: Learning
to follow instructions via graphical user interfaces. Advances in Neural Information Processing
Systems, 36, 2024.

[15] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

[16] Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

[17] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile ui action sequences. arXiv preprint arXiv:2005.03776, 2020.

[18] Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu,
Weichen Zhang, Peiyi Wang, Xiangwu Guo, et al. Assistgui: Task-oriented desktop graphical
user interface automation. arXiv preprint arXiv:2312.13108, 2023.

26

https://copilot.microsoft.com/

[19] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

[20] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang,
Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena:
Evaluating multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649,
2024.

[21] Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali
Ahmed, Tyler Jackson, Shibl Mourad, and Doina Precup. Androidenv: A reinforcement learning
platform for android. arXiv preprint arXiv:2105.13231, 2021.

[22] Juyeon Yoon, Robert Feldt, and Shin Yoo. Autonomous large language model agents enabling
intent-driven mobile gui testing. arXiv preprint arXiv:2311.08649, 2023.

[23] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[24] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

[25] Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed,
Zicheng Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for
multimodal reasoning and action. arXiv preprint arXiv:2303.11381, 2023.

[26] Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and Mike Zheng
Shou. Assistgpt: A general multi-modal assistant that can plan, execute, inspect, and learn.
arXiv preprint arXiv:2306.08640, 2023.

[27] Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter,
Victor Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language
model for ui and infographics understanding. arXiv preprint arXiv:2402.04615, 2024.

[28] Xinyu Zhang, Mengxue Kang, Fei Wei, Shuang Xu, Yuhe Liu, and Lin Ma. Tie: Revolutionizing
text-based image editing for complex-prompt following and high-fidelity editing. arXiv preprint
arXiv:2405.16803, 2024.

[29] Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu, Lijuan Liu, Nevan Wichers, Gabriel
Schubiner, Ruby Lee, and Jindong Chen. Actionbert: Leveraging user actions for semantic un-
derstanding of user interfaces. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 5931–5938, 2021.

[30] Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen,
et al. Uibert: Learning generic multimodal representations for ui understanding. arXiv preprint
arXiv:2107.13731, 2021.

[31] Pratyay Banerjee, Shweti Mahajan, Kushal Arora, Chitta Baral, and Oriana Riva. Lexi: Self-
supervised learning of the ui language. arXiv preprint arXiv:2301.10165, 2023.

[32] Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v, 2023.

[33] Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisensch-
los, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct:
Screenshot parsing as pretraining for visual language understanding. In International Confer-
ence on Machine Learning, pages 18893–18912. PMLR, 2023.

[34] An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang,
Yiwu Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal
models for zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

[35] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang,
Zihan Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
arXiv preprint arXiv:2312.08914, 2023.

27

[36] Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols,
Yinfei Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms.
arXiv preprint arXiv:2404.05719, 2024.

[37] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[38] Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities.
arXiv preprint arXiv:2308.02490, 2023.

[39] PyAutoGUI. Pyautogui. 2024. https://pyautogui.readthedocs.io/en/latest/.
[40] AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 2024.
[41] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,

Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[42] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[43] OpenAI. Introducing chatgpt. OpenAI Blog, 09 2021.
[44] Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. Accessed:

2024-04-18.
[45] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris

Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[46] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.

[47] Azure OCR. Azure ocr. 2024. https://azure.microsoft.com/en-us/products/
ai-services/ai-vision.

[48] OBS Studio. Obs studio. 2024. https://obsproject.com/.

28

https://pyautogui.readthedocs.io/en/latest/
https://azure.microsoft.com/en-us/products/ai-services/ai-vision
https://azure.microsoft.com/en-us/products/ai-services/ai-vision
https://obsproject.com/

